We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC), which invests annually over $1 billion in people, discovery and innovation.

INTRODUCTION

- This project pertains to the development of a Fault Detection and Diagnosis System (FDD) that facilitates the detection, isolation, and identification of different fault signatures in the internal combustion engine (ICE).

- FDD enables proactive maintenance and higher reliability and trust by enhancing the reputation of manufacturing companies.

- FDD systems should:
 - Be affordable, Portable, and User Friendly
 - Provide instant diagnosis of a running ICE

THE SENSORY SYSTEM (Hardware)

- The H/W layout consists of 2 accelerometers, 2 microphones, and camshaft position sensor. The computational core is the battery powered UDOOX86 that is the most powerful board processor. It also contains an Intel® Curie uC that receives analog data and a powerful 2.56 GHz Quad-Core uP that carries out the required signal processing

CAD DOMAIN IEMSPCA (Software)

The system uses the Industrial Extended Multi-Scale Principle Components Analysis (IEMSPCA) Algorithm that analyses signals in both time and frequency domains to detect any deviations from baseline measurements. If there is a deviation, the software generates fault signatures used to diagnose the fault type.

RESULTS

- Small, light, and modular Sensory System
- Cloud based API to maximize the learning throughput from many cars
- Expandability over both Hybrid and Electric car models