COURSE OUTLINE

Please refer to course website for updated information.

COURSE DESCRIPTION

Generation and transmission of bioelectricity in excitable cells; ionic transport in cellular membranes; propagation of electricity within and between cells; neural, cardiac and muscle physiology; EEG, ECG and EMG; pacemakers and neural prostheses.

Three lectures, one tutorial; second term

PRE-REQUISITES AND ANTI-REQUISITES

Pre-requisite(s): Registration in Level III Electrical and Biomedical Engineering or level IV or V of the Integrated Biomedical Engineering and Health Sciences (IBEHS) Program or level IV of Electrical Engineering

Anti-requisite(s): ELECENG 3BB3

SCHEDULE and MODE OF DELIVERY

The material for this course will be delivered through in-person lectures and tutorials. Lectures and tutorials will also be streamed and recorded via Echo360.

INSTRUCTOR

Dr. Ian C. Bruce
e-mail: brucei@mcmaster.ca
e-mail alias: ibruce@ieee.org
Office: ITB-A213
Phone: 905-525-9140 ext. 26984
Office Hours: By appointment – see course website for details
TEACHING ASSISTANTS

Names, contact information and office hours are provided on the course website.

COURSE WEBSITE/S

http://avenue.mcmaster.ca

COURSE OBJECTIVES

To develop both a qualitative and a quantitative understanding of the generation and transmission of bioelectricity in and between excitable cells. This will involve circuit analysis and modelling of potentials and currents across the cellular membrane, action potentials, propagation of potentials along the cellular membrane, electrical stimulation of excitable tissue, extracellular fields, neural electrophysiology, cardiac electrophysiology, the neuromuscular junction, skeletal muscle, and functional electrical stimulation.

ASSUMED KNOWLEDGE

- Algebra, trigonometry, functions, and calculus
- Basic electrical circuit theory
- Introductory electromagnetics
- Basic linear systems theory

COURSE MATERIALS

Required Text:

Secondary References:
Software:
MATLAB (required for assignments)

Calculator:
Only the McMaster Standard Calculator (Casio fx-991 MS or MS Plus) is permitted for in-person tests and examinations. This is available at the Campus Store.

Other:
Lecture notes will be posted on the course web site

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction to Bioelectricity and Excitable Cells</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Bioelectric Potentials and Currents</td>
<td>P&B Ch. 3</td>
</tr>
<tr>
<td>3</td>
<td>Membrane Channels</td>
<td>P&B Ch. 4</td>
</tr>
<tr>
<td>4</td>
<td>Action Potentials</td>
<td>P&B Ch. 5</td>
</tr>
<tr>
<td>5</td>
<td>Impulse Propagation</td>
<td>P&B Ch. 6</td>
</tr>
<tr>
<td>6</td>
<td>Electrical Stimulation of Excitable Tissue</td>
<td>P&B Ch. 7</td>
</tr>
<tr>
<td>7</td>
<td>Extracellular Fields</td>
<td>P&B Ch. 8</td>
</tr>
<tr>
<td>8</td>
<td>Neural Electrophysiology</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Cardiac Electrophysiology</td>
<td>P&B Ch. 9</td>
</tr>
<tr>
<td>10</td>
<td>The Neuromuscular Junction & Skeletal Muscle</td>
<td>P&B Chs. 10 & 11</td>
</tr>
<tr>
<td>11</td>
<td>Applications of Biopotential Measurement</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Functional Electrical Stimulation</td>
<td>P&B Ch. 12</td>
</tr>
</tbody>
</table>

A more detailed time line is available on the course website.
At certain points in the course, it may make good sense to modify the schedule. The instructor may modify elements of the course and will notify students accordingly (in class, on the course website).

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Computer Simulation Lab Assignment</td>
<td>10%</td>
</tr>
<tr>
<td>Math & Computer Programming Assignment #1</td>
<td>6%</td>
</tr>
<tr>
<td>Math & Computer Programming Assignment #2</td>
<td>6%</td>
</tr>
<tr>
<td>Math & Computer Programming Assignment #3</td>
<td>6%</td>
</tr>
<tr>
<td>Math & Computer Programming Assignment #4</td>
<td>6%</td>
</tr>
<tr>
<td>Math & Computer Programming Assignment #5</td>
<td>6%</td>
</tr>
<tr>
<td>Midterm Test</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>40%</td>
</tr>
<tr>
<td>Total</td>
<td>100%</td>
</tr>
</tbody>
</table>
The instructor reserves the right to choose the format (i.e., written or oral) of any deferred midterm or final exam in this course.

Please note that announcements concerning any type of graded material may be in any format (e.g., announcements may be made only in class, via the course e-mailing list, or on the course web site). Students are responsible for completing the graded material regardless of whether they received the announcement or not.

ACADEMIC INTEGRITY

You are expected to exhibit honesty and use ethical behaviour in all aspects of the learning process. Academic credentials you earn are rooted in principles of honesty and academic integrity. It is your responsibility to understand what constitutes academic dishonesty. Academic dishonesty is to knowingly act or fail to act in a way that results or could result in unearned academic credit or advantage. This behaviour can result in serious consequences, e.g. the grade of zero on an assignment, loss of credit with a notation on the transcript (notation reads: “Grade of F assigned for academic dishonesty”), and/or suspension or expulsion from the university. For information on the various types of academic dishonesty please refer to the Academic Integrity Policy, located at https://secretariat.mcmaster.ca/university-policies-procedures-guidelines/

The following illustrates only three forms of academic dishonesty:

- plagiarism, e.g. the submission of work that is not one’s own or for which other credit has been obtained.
- improper collaboration in group work.
- copying or using unauthorized aids in tests and examinations.

AUTHENTICITY / PLAGIARISM DETECTION

Some courses may use a web-based service (Turnitin.com) to reveal authenticity and ownership of student submitted work. For courses using such software, students will be expected to submit their work electronically either directly to Turnitin.com or via an online learning platform (e.g. A2L, etc.) using plagiarism detection (a service supported by Turnitin.com) so it can be checked for academic dishonesty. Students who do not wish their work to be submitted through the plagiarism detection software must inform the Instructor before the assignment is due. No penalty will be assigned to a student who does not submit work to the plagiarism detection software. All submitted work is subject to normal verification that standards of academic integrity have been upheld (e.g., online search, other software, etc.). For more details about McMaster’s use of Turnitin.com please go to www.mcmaster.ca/academicintegrity.
COURSES WITH AN ON-LINE ELEMENT

Some courses may use on-line elements (e.g. e-mail, Avenue to Learn (A2L), LearnLink, web pages, capa, Moodle, ThinkingCap, etc.). Students should be aware that, when they access the electronic components of a course using these elements, private information such as first and last names, user names for the McMaster e-mail accounts, and program affiliation may become apparent to all other students in the same course. The available information is dependent on the technology used. Continuation in a course that uses on-line elements will be deemed consent to this disclosure. If you have any questions or concerns about such disclosure please discuss this with the course instructor.

Some courses may use online proctoring software for tests and exams. This software may require students to turn on their video camera, present identification, monitor and record their computer activities, and/or lock/restrict their browser or other applications/software during tests or exams. This software may be required to be installed before the test/exam begins.

COPYRIGHT AND RECORDING

Students are advised that lectures, demonstrations, performances, and any other course material provided by an instructor include copyright protected works. The Copyright Act and copyright law protect every original literary, dramatic, musical and artistic work, including lectures by University instructors.

The recording of lectures, tutorials, or other methods of instruction may occur during a course. Recording may be done by either the instructor for the purpose of authorized distribution, or by a student for the purpose of personal study. Students should be aware that their voice and/or image may be recorded by others during the class. Please speak with the instructor if this is a concern for you.

CONDUCT EXPECTATIONS

As a McMaster student, you have the right to experience, and the responsibility to demonstrate, respectful and dignified interactions within all of our living, learning and working communities. These expectations are described in the Code of Student Rights & Responsibilities (the “Code”). All students share the responsibility of maintaining a positive environment for the academic and personal growth of all McMaster community members, whether in person or online. It is essential that students be mindful of their interactions online, as the Code remains in effect in virtual learning environments. The Code applies to any interactions that adversely affect, disrupt, or interfere with reasonable participation in University activities. Student disruptions or behaviours that interfere with university functions on online platforms (e.g. use of Avenue 2 Learn, WebEx or Zoom for delivery), will be taken very seriously and will be investigated. Outcomes may include restriction or removal of the involved students’ access to these platforms.
ACADEMIC ACCOMMODATIONS

Students with disabilities who require academic accommodation must contact Student Accessibility Services (SAS) at 905-525-9140 ext. 28652 or sas@mcmaster.ca to make arrangements with a Program Coordinator. For further information, consult McMaster University’s Academic Accommodation of Students with Disabilities policy.

Students requiring academic accommodation based on religious, indigenous or spiritual observances should follow the procedures set out in the RISO policy. Students should submit their request to their Faculty Office normally within 10 working days of the beginning of term in which they anticipate a need for accommodation or to the Registrar's Office prior to their examinations.

Students should also contact their instructors as soon as possible to make alternative arrangements for classes, assignments, and tests.

REQUESTS FOR RELIEF FOR MISSED ACADEMIC WORK

McMaster Student Absence Form (MSAF): In the event of an absence for medical or other reasons, students should review and follow the Academic Regulation in the Undergraduate Calendar “Requests for Relief for Missed Academic Term Work”.

EXTREME CIRCUMSTANCES

The University reserves the right to change the dates and deadlines for any or all courses in extreme circumstances (e.g., severe weather, labour disruptions, etc.). Changes will be communicated through regular McMaster communication channels, such as McMaster Daily News, A2L and/or McMaster email.

ACCREDITATION LEARNING OUTCOMES

Note: The Learning Outcomes defined in this section are measured throughout the course and form part of the Department’s continuous improvement process. They are a key component of the accreditation process for the program and will not be taken into consideration in determining a student’s actual grade in the course. For more information on accreditation, please ask your instructor or visit: http://www.engineerscanada.ca.
<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Indicators</th>
<th>Measurement Methods(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>be able to develop an electrical-circuit model of the membrane of an excitable cell such as a neuron or muscle cell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>be able to solve differential equations describing the response of ion channel gating particles and of the transmembrane potential to a stimulus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>be able to use a neural membrane simulator program to explore the dynamical behaviour of neural excitability</td>
<td>5.2</td>
<td>Computer Lab Assignment</td>
</tr>
<tr>
<td>understand the principles behind the propagation of electrical potentials along the cellular membrane</td>
<td></td>
<td></td>
</tr>
<tr>
<td>appreciate how the activity of excitable cells gives rise to electrical potentials that can be measured on the surface of the skin such as EEG, ECG & EMG and understand the limits of what can be inferred from such measurements</td>
<td>2.2</td>
<td>Midterm Test or Final Exam Question</td>
</tr>
<tr>
<td>understand how different neural elements will respond to electrical stimulation depending on the electrode-neuron geometry and the current waveform</td>
<td>1.4</td>
<td>Midterm Test or Final Exam Question</td>
</tr>
<tr>
<td>appreciate the technical and clinical issues faced in the development of implantable medical electronics</td>
<td>1.4</td>
<td>Midterm Test or Final Exam Question</td>
</tr>
<tr>
<td>understand the social impact of medical electronics, including health, safety, legal, cultural, and other relevant factors, and identifies uncertainties in decisions</td>
<td>9.2</td>
<td>Survey</td>
</tr>
<tr>
<td>appreciate how the principles of equity and universal design can be applied to medical electronics, to ensure equitable treatment of all stakeholders.</td>
<td>10.1</td>
<td>Survey</td>
</tr>
</tbody>
</table>

www.eng.mcmaster.ca/ece
Information for Laboratory Safety and Important Contacts

This document provides important information for the healthy and safe operation of ECE instructional laboratories. This document is required reading for all laboratory supervisors, instructors, researchers, staff, and students working in or managing instructional laboratories in ECE. It is expected that revisions and updates to this document will be done continually. A McMaster University lab manual is also available to read in every laboratory and online https://hr.mcmaster.ca/app/uploads/2019/07/2019-McMaster-Lab-Manual.pdf

General Health and Safety Principles

Good laboratory practice requires that every laboratory worker and supervisor observe the following whether conducting lab work at school or at home:

1. Food and beverages are not permitted in the instructional laboratories.
2. A Laboratory Information Sheet on each lab door identifying potential hazards and emergency contact names should be known.
3. Laboratory equipment should only be used for its designed purpose.
4. Proper and safe use of lab equipment should be known before using it.
5. The course TA leading the lab should be informed of any unsafe condition.
6. The location and correct use of all available safety equipment should be known.
7. Potential hazards and appropriate safety precautions should be determined, and sufficiency of existing safety equipment should be confirmed before beginning new operations.
8. Proper waste disposal procedures should be followed.

Location of Safety Equipment

<table>
<thead>
<tr>
<th>Fire Extinguisher</th>
<th>First Aid Kit</th>
</tr>
</thead>
<tbody>
<tr>
<td>On walls in halls outside of labs</td>
<td>ITB A111, or dial “88” after 4:30 p.m.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Telephone</th>
<th>Fire Alarm Pulls</th>
</tr>
</thead>
<tbody>
<tr>
<td>On the wall of every lab near the door</td>
<td>Near all building exit doors on all floors</td>
</tr>
</tbody>
</table>
In Case of a Fire (On Campus Dial 88)
When calling to report a fire, give name, exact location, and building.
1. Immediately vacate the building via the nearest Exit Route. Do not use elevators!
2. Everyone is responsible for knowing the location of the nearest fire extinguisher, the fire alarm, and the nearest fire escape.
3. The safety of all people in the vicinity of a fire is of foremost importance. But do not endanger yourself!
4. In the event of a fire in your work area shout “Fire!” and pull the nearest fire alarm.
5. Do not attempt to extinguish a fire unless you are confident it can be done in a prompt and safe manner utilizing a hand-held fire extinguisher. Use the appropriate fire extinguisher for the specific type of fire. Most labs are equipped with Class A, B, and C extinguishers. Do not attempt to extinguish Class D fires which involve combustible metals such as magnesium, titanium, sodium, potassium, zirconium, lithium, and any other finely divided metals which are oxidizable. Use a fire sand bucket for Class D fires.
6. Do not attempt to fight a major fire on your own.
7. If possible, make sure the room is evacuated; close but do not lock the door and safely exit the building.

Clothing on Fire
Do not use a fire extinguisher on people
1. Douse with water from safety shower immediately or
2. Roll on floor and scream for help or
3. Wrap with fire blanket to smother flame (a coat or other nonflammable fiber may be used if blanket is unavailable). Do not wrap a standing person; rather, lay the victim down to extinguish the fire. The blanket should be removed once the fire is out to disperse the heat.
Equipment Failure or Hazard
Failure of equipment may be indicative of a safety hazard - You must report all incidents. Should you observe excessive heat, excessive noise, damage, and/or abnormal behaviour of the lab equipment:
1. Immediately discontinue use of the equipment.
2. In power labs, press wall-mounted emergency shut-off button.
3. Inform your TA of the problem.
4. Wait for further instructions from your TA.
5. TA must file an incident report.

Protocol For Safe Laboratory Practice
In general, leave equipment in a safe state when you finish with it. When in doubt, consult the course TA.

Defined Roles

<table>
<thead>
<tr>
<th>Role</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>TA</td>
<td>The first point of contact for lab supervision</td>
</tr>
</tbody>
</table>
| ECE Lab Supervisor | Steve Spencer- ITB 147
| | steve@mail.ece.mcmaster.ca |
| ECE Chair | Mohamed Bakr- ITB A111
| | mbakr@mcmaster.ca |
| ECE Administrator | Shelby Gaudrault- ITB A111
| | gaudraus@mcmaster.ca |
| ECE Course Instructor | Please contact your specific course instructor directly |