Course Outline

1. COURSE INFORMATION

<table>
<thead>
<tr>
<th>Session Offered</th>
<th>Fall 2012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Name</td>
<td>SYSTEM CONTROL AND DATA ACQUISITION II</td>
</tr>
<tr>
<td>Course Code</td>
<td>PROC TECH 3SD3</td>
</tr>
<tr>
<td>Program Name</td>
<td>Process Automation Technology</td>
</tr>
<tr>
<td>Calendar Description</td>
<td>SCADA architecture, bus standards and protocols, multi-loop PID control, workstation design, system safety, redundancy and maintenance and SCADA project design.</td>
</tr>
</tbody>
</table>

Instructor(s)
- Jack Zou (lecture)
- Bill Rolfe (lab)
- Nem Stefanovic (lab)

E-Mail: zouzhen@mcmaster.ca
E-Mail: bill.rolfe@mohawkcollege.ca
E-Mail: stefano@mcmaster.ca

2. COURSE SPECIFICS

Course Description
This course provides the basics of SCADA used for process control with an industrial controller. The topics covered include basic concepts, controller designation, hardware and software system components & configuration, project structure, CFCs and SFCs, & technological blocks. In the lab, students are configuring and setting up the controller and its components for SCADA applications. A SCADA related independent study is conducted by each student.

Instruction Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Hours per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Classroom instruction</td>
<td>36</td>
</tr>
<tr>
<td>L</td>
<td>Laboratory, workshop or fieldwork</td>
<td>36</td>
</tr>
<tr>
<td>T</td>
<td>Tutorial</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Distance education</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours 72

Resources

<table>
<thead>
<tr>
<th>ISBN</th>
<th>Textbook Title & Edition</th>
<th>Author & Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Other Supplies

Prerequisite(s)
PROC TECH 2CE3, 3CT3, 3SC3 and registration in Level III or above of Process Automation Technology

Corequisite(s)

Antirequisite(s)

Course Specific Policies
- Lab reports after grading will become the property of the department and will not be returned to the students. The student will be able to view them after grading.
- Plagiarism: Any plagiarism detected in reports and exams will be dealt with the McMaster University Policy on Plagiarism.
- Laboratory attendance is compulsory. A mark of zero will be allocated for missed laboratory experiments.
- Late lab reports will result in 5% reduction in the assigned marks for each
day the report is late. Re-writes in tests/exam will be allowed only after an accepted MSAF has been submitted.

- **Laboratory Safety Policy:** The students must follow the departmental safety policy. The students not following the safety policy will not be allowed to work in the laboratory and will not be allowed to make up such missed labs.
- **Final exam will include questions from the independent study projects.**

| Departmental Policies | Students must maintain a GPA of 3.5 on a 12 point scale to continue in the program. In order to achieve the required learning objectives, on average, B.Tech. students can expect to do at least 3 hours of “out-of-class” work for every scheduled hour in class. “Out-of-class” work includes reading, research, assignments and preparation for tests and examinations. The use of cell phones, iPods, laptops and other personal electronic devices are prohibited from the classroom during the class time, unless the instructor makes an explicit exception. Announcements made in class or placed on Avenue are considered to have been communicated to all students including those not in class. |

| 3. **SUB TOPIC(S)** | **Week 1**
| | Introduction & Basic Concepts
| | **Introduction**
| | **Course Objectives**
| | **Course Policies and Evaluation**
| | **Basic definitions**
| | **Controller Designations**
| **Week 2** | **System Overview**
| | **Entire Plant View**
| | **Totally Integrated Automation**
| | **Simatic Control System**
| | **AS/PLC**
| | **I/O Peripherals**
| | **HMI**
| | **Communication Bus**
| **Week 3** | **Configuration overview**
| | **Configuration with Function Blocks**
| | **System Example**
| | **PCS Hardware**
| | **PCS Software**
| | **Configuration Steps**
| **Week 4** | **System Configuration**
| | **PCS 7 Components**
<table>
<thead>
<tr>
<th>Week</th>
<th>Topics</th>
</tr>
</thead>
</table>
| 5 | Configuring AS Hardware
Compiling and Downloading AS Hardware
Errors & Diagnostics
OS Requirements
ES Requirements
Corporate Requirements |
| 5 | System & Network Configuration
Safety Concerns
Configuring the PC Station
Setting the PC Station
SCE
Network Structure
Use of NetPro
Creating and Downloading S7 Connections
Other S7 Connections |
| 6 | Project Structure
Project Environment
Our System: Multiproject
PH Assignment; HID Generation
OS Hierarchy AS/OS
Process Object View
Names in the Component View |
| 7 | CFC
Midterm Exam
Libraries and Blocks
Organization Blocks |
| 8 | CFC
CFC Basics- Configuring, Compiling-Downloading, Testing
Introduction to PLCSIM
Motor Control System
Program and Data
Control Loops
CFC Chart-in-Chart
Block Data Structure & Changes |
<p>| 9 | SFC |</p>
<table>
<thead>
<tr>
<th>Week</th>
<th>Overview</th>
</tr>
</thead>
<tbody>
<tr>
<td>Week 10</td>
<td>SFC</td>
</tr>
<tr>
<td></td>
<td>Operating Mode Logic & Sequence</td>
</tr>
<tr>
<td></td>
<td>External View of SFC</td>
</tr>
<tr>
<td></td>
<td>Sequence Control Example</td>
</tr>
<tr>
<td>Week 11</td>
<td>Technological Blocks</td>
</tr>
<tr>
<td></td>
<td>PID</td>
</tr>
<tr>
<td></td>
<td>Motor Control</td>
</tr>
<tr>
<td></td>
<td>Other Blocks</td>
</tr>
<tr>
<td>Week 12</td>
<td>Driver Blocks</td>
</tr>
<tr>
<td></td>
<td>Signal processing Blocks</td>
</tr>
<tr>
<td></td>
<td>Other Blocks</td>
</tr>
</tbody>
</table>

Proposed list of experiments

<table>
<thead>
<tr>
<th>Lab 1</th>
<th>Introduction & PCS7 System Components</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lab 2</td>
<td>PCS7 System Configuration</td>
</tr>
<tr>
<td>Lab 3</td>
<td>PCS7 System Configuration</td>
</tr>
<tr>
<td>Lab 4</td>
<td>PCS7 System Configuration</td>
</tr>
<tr>
<td>Lab 5</td>
<td>Programming Using CFCs</td>
</tr>
<tr>
<td>Lab 6</td>
<td>Programming Using CFCs</td>
</tr>
<tr>
<td>Lab 7</td>
<td>Project 1</td>
</tr>
<tr>
<td>Lab 8</td>
<td>Project 1</td>
</tr>
<tr>
<td>Lab 9</td>
<td>Project 2</td>
</tr>
<tr>
<td>Lab 10</td>
<td>Project 2</td>
</tr>
<tr>
<td>Lab 11</td>
<td>Project 3</td>
</tr>
<tr>
<td>Lab 12</td>
<td>Project 3</td>
</tr>
<tr>
<td>Lab schedule</td>
<td>Some of the labs will be performed on a rotating basis. The actual lab schedule will be provided by the instructor</td>
</tr>
</tbody>
</table>

Note that this structure represents a plan and is subject to adjustment term by term. The instructor and the University reserve the right to modify elements of the course during the term. The University may change the dates and deadlines for any or all courses in extreme circumstances. If either type of modification becomes necessary, reasonable notice and communication with the students will be given with explanation and the opportunity to comment on changes.

4. ASSESSMENT OF LEARNING

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterm</td>
<td>15%</td>
</tr>
<tr>
<td>Project (written report and classroom presentation)</td>
<td>10%</td>
</tr>
<tr>
<td>Labs:</td>
<td>40%</td>
</tr>
<tr>
<td>*Laboratory Marks will be further broken down as follows: 1. PCS7 System Lab 8%, 2. Programming Using CFCs Lab 8%, and 3. Three Projects 24%</td>
<td></td>
</tr>
<tr>
<td>Project questions in final examination</td>
<td>10%</td>
</tr>
</tbody>
</table>
Course results determined on a percentage scale will be converted to an official letter grade, as indicated in the Undergraduate Calendar. The results of all courses attempted will appear on your transcript as letter grades.

5. LEARNING OUTCOMES

1. Explain the common terms used in a control system
2. Select controllers according to application, design, parameter components, control structure, and control process; DCS vs PLC
3. Use network configuration tools, CFCs, and technological and driver blocks for an automation project
4. Plan, implement, and test a process control automation workstation
5. Design and implement a process control project using PCS 7, and prepare project reports
6. Summarize, explain, and illustrate a special topic in the field of SCADA through a report and a presentation, after independent study in the topic.

6. POLICIES

Anti-Discrimination
The Faculty of Engineering is concerned with ensuring an environment that is free of all discrimination. If there is a problem, individuals are reminded that they should contact the Department Chair, the Sexual Harassment Officer or the Human Rights Consultant, as soon as possible. http://www.mcmaster.ca/policy/General/HR/Anti-Discrimination%20policy.pdf

Academic Integrity
Attention is drawn to the Statement on Academic Ethics and the Senate Resolutions on Academic Dishonesty as found in the Senate Policy Statements distributed at registration and available in the Senate Office. Any student who infringes one of these resolutions will be treated according to the published policy.

Academic dishonesty consists of misrepresentation by deception or by other fraudulent means and can result in serious consequences, e.g. the grade of zero on an assignment, loss of credit with a notation on the transcript (notation reads: “Grade of F assigned for academic dishonesty”), and/or suspension or expulsion from the University.

It is your responsibility to understand what constitutes academic dishonesty. For information on the various kinds of academic dishonesty please refer to the Academic Integrity Policy, specifically Appendix 3, located at:
http://www.mcmaster.ca/policy/Students-AcademicStudies/AcademicIntegrity.pdf

Requests for Relief for Missed Academic Term Work (Assignments, Mid-Terms, etc.)
The McMaster Student Absence Form is a self reporting tool for Undergraduate Students to report absences that last up to 5 days and provides the ability to request accommodation for any missed academic work. Please note, this tool cannot be used during any final examination period.

You may submit a maximum of 1 Academic Work Missed requests per term. It is YOUR responsibility to follow up with your Instructor immediately regarding the nature of the accommodation.

If you are absent more than 5 days or exceed 1 request per term you MUST visit your Associate Dean's Office (Faculty Office). You may be required to provide supporting documentation.

This form should be filled out immediately when you are about to return to class after your absence. http://www.mcmaster.ca/msaf/

E-Learning Policy
Consistent with the Bachelor of Technology’s policy to utilize e-learning as a complement to traditional classroom instruction, students are expected to obtain appropriate passwords and accounts to access Avenue To Learn for this course. Materials will be posted by class for student download. It is expected that students will avail themselves of these materials prior to class. Avenue can be accessed via
Communications

It is the student’s responsibility to:

- Maintain current contact information with the University, including address, phone numbers, and emergency contact information.
- Use the University provided e-mail address or maintain a valid forwarding e-mail address.
- Regularly check the official University communications channels. Official University communications are considered received if sent by postal mail, by fax, or by e-mail to the student’s designated primary e-mail account via their @mcmaster.ca alias.
- Accept that forwarded e-mails may be lost and that e-mail is considered received if sent via the student’s @mcmaster.ca alias.
- Check the McMaster/Avenue email and course websites on a regular basis during the term.

Protection of Privacy Act (FIPPA)

The Freedom of Privacy of Information and Protection of Privacy Act (FIPPA) applies to universities. Instructors should take care to protect student names, student numbers, grades and all other personal information at all times. For example, the submission and return of assignments and posting of grades must be done in a manner that ensures confidentiality.

http://www.mcmaster.ca/univsec/fippa/fippa.cfm

Academic Accommodation of Students with Disabilities Policy

The Centre for Student Development is committed to the continuous improvement of accessibility for students with disabilities. Students are encouraged to contact CSD as early as possible before each term starts to become familiar with the services offered and to confirm their accommodations.

Students must forward a copy of the CSD accommodation to the instructor of each course and to the Program Administrator of the B.Tech. Program immediately upon receipt. If a student with a disability chooses NOT to take advantage of a CSD accommodation and chooses to sit for a regular exam, a petition for relief may not be filed after the examination is complete. http://csd.mcmaster.ca

Student Code of Conduct

The Student Code of Conduct (SCC) exists to promote the safety and security of all the students in the McMaster community and to encourage respect for others, their property and the laws of the land. McMaster University is a community which values mutual respect for the rights, responsibilities, dignity and well-being of others. The purpose of the Student Code of Conduct is to outline accepted standards of behavior that are harmonious with the goals and the well-being of the University community, and to define the procedures to be followed when students fail to meet the accepted standards of behavior. All students have the responsibility to familiarize themselves with the University regulations and the conduct expected of them while studying at McMaster University.

http://judicialaffairs.mcmaster.ca/pdf/SCC.pdf