1. COURSE INFORMATION

Session Offered
Fall 2017

Course Name
Measurements and Instrumentation

Course Code
ENR TECH 3MI3

Date(s) and Time(s) of lectures
Saturday 9:00 a.m. - 12:00 p.m.

Program Name
Bachelor of Technology

Calendar Description
Transducers, logic circuits, basic electronic devices and their applications. Calculate/measure the input(s) and output(s) of various systems. Recognize, install and apply instruments within power plants.

Instructor
Name(s):
Dr. Ahmed AbouArkoub
Phone: 905 5751212/3988
E-Mail: arkouba@mcmaster.ca
Office Location: Fennell Campus E231D
Office Hours: Monday 12:00-2:00pm (FF) (appointment) Saturday 12:00-1:00p.m (ETB)

Teaching Assistant (TA)
Name(s):
e-mail address:
Office Hours:

2. COURSE SPECIFICS

Course Objectives
This course will introduce the fundamentals of measurements and the principles of instrumentation in the power industry. Covers the terminology, concepts, principles and computations needed to specify, analyze and maintain instrumentation systems. Practical examples will be used for common Pressure, Level, Temperature, Flow, Final Elements and Safety Systems. Develop mathematical models of physical systems, including mechanical and electrical systems. Study frequency response of a dynamics system. Data acquisition software and hardware will also be discussed.

<table>
<thead>
<tr>
<th>Instruction Type</th>
<th>Code</th>
<th>Type</th>
<th>Total Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Classroom Instruction</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>Laboratory, workshop or fieldwork</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>Tutorial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Distance Education</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTAL HOURS
39

Resources

<table>
<thead>
<tr>
<th>ISBN</th>
<th>Textbook Title & Edition</th>
<th>Author & Publisher</th>
</tr>
</thead>
<tbody>
<tr>
<td>9780826934307</td>
<td>Instrumentation, 5th Ed.</td>
<td>Franklyn W. Kirk, American Tech Publishers</td>
</tr>
</tbody>
</table>

Other Supplies
LabVIEW Software and Manuals

Prerequisite(s)
ENGTECH 3MA3

Corequisite(s)

Antirequisite(s)

Course Specific Policies
1) All B. Tech. students must complete WHMIS 1A00 (Health and Safety Issues) by September 13th if they haven’t already done so. Students who do not pass WHMIS 1A00 will not be able to attend any labs applicable to their course(s) until ENG TECH 1A00 has been passed.

2) The instructor reserves the right to choose the format of any deferred midterms or deferred final exams (i.e. format may be written or oral).
3) Please note that announcements concerning any types of graded material may be in any format (e.g., announcements may be made only in class). Students are responsible for completing the graded material regardless of whether they received the announcement or not.

Departmental Policies

Students must maintain a GPA of 3.5/12 to continue in the program. In order to achieve the required learning objectives, on average, B.Tech. students can expect to do at least 3 hours of “out-of-class” work for every scheduled hour in class. “Out-of-class” work includes reading, research, assignments and preparation for tests and examinations.

Where group work is indicated in the course outline, such collaborative work is mandatory. The use of cell phones, iPods, laptops and other personal electronic devices are prohibited from the classroom during the class time, unless the instructor makes an explicit exception. Announcements made in class or placed on Avenue are considered to have been communicated to all students including those individuals that are not in class.

Instructor has the right to submit work to software to identify plagiarism.

3. SUB TOPIC(S)

| Week 1 | • Introduction to instrumentation
| | • P&I Drawing and instrumentation loop drawing | Chapter 1 |
| Week 2 | • Pressure measurement principle and Application | Chapter 3 |
| Week 3 | • Level measurement principle and application
| | • Hydrostatic
| | • Conductivity
| | • Capacitance
| | • Ultrasonic
| | • Nuclear
| | • Load cells
| | • Laser | Chapter 4 |
| Week 4 | • Density measurement
| | • Bubbler system
| | • Open vs. closed vessels
| | • Ranges calculation | Chapter 485 |
| Week 5 | • Temperature measurement - Principle and Application
| | • Heat and energy
| | • Thermocouple
| | • Resistance - RTD
| | • Thermistor
| | • Integrated circuit
| | • Non-contact and radiation methods | Chapter 2 |

Mid-term Recess: Monday, October 9 to Sunday, October 15, 2017

| Week 6 | • Midterm
| | • Flow measurement-I - principle and application
| | • Differential flow meters
| | • Target
| | • Turbine | Chapter 5 |

| Week 7 | • Flow measurement-II
| | • Ultrasound flow meters
| | • Mass and nuclear flowmeter
| | • Flowmeter - performance and maintenance | Chapter 5 |

<p>| Week 8 | • Position Sensors and Switches | Chapter 10 |
| Week 9 | • Lab 1 – Introduction to Labview | - |
| Week 10 | • Lab 2 – Applying Labview to various measurement applications | - |
| Week 11 | • Final elements | Chapter 9 |</p>
<table>
<thead>
<tr>
<th>Week 12</th>
<th>Week 13</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanical actuators and valves</td>
<td>Physical systems</td>
<td>Chapter 10</td>
</tr>
<tr>
<td></td>
<td>Mathematical modeling of mechanical and electrical systems</td>
<td></td>
</tr>
<tr>
<td></td>
<td>System representation and behaviors</td>
<td>Chapter 9&10</td>
</tr>
<tr>
<td></td>
<td>Dynamic systems and frequency response</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Review</td>
<td></td>
</tr>
</tbody>
</table>

Classes end: Wednesday, December 6, 2017
Final examination period: Friday, December 8 to Thursday, December 21, 2017
All examinations MUST be written during the scheduled examination period

Note: this structure represents a plan and is subject to adjustment term by term. The instructor and the university reserve the right to modify elements of the course during the term. The university may change the dates and deadlines for any or all courses in extreme circumstances. If either type of modification becomes necessary, reasonable notice and communication with the students will be given with explanation and the opportunity to comment on changes.

4. **ASSESSMENT OF LEARNING *including dates***

<table>
<thead>
<tr>
<th></th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labs</td>
<td>10%</td>
</tr>
<tr>
<td>Assignments</td>
<td>10%</td>
</tr>
<tr>
<td>Project</td>
<td>15%</td>
</tr>
<tr>
<td>Mid-term Test</td>
<td>20%</td>
</tr>
<tr>
<td>Final Exam</td>
<td>45%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100%</td>
</tr>
</tbody>
</table>

Percentage grades will be converted to letter grades and grade points per the University calendar.

5. **LEARNING OUTCOMES**

1. Analyze various process control loops, their functions and correctly use the technical terms and symbols involved in control system
2. Identify pressure, level, temperature and flow measuring systems commonly encountered in process control and apply practical examples in the area of power generation and distribution
3. Recognize the application of various pressure, level, temperature, and flow measuring devices. Also, employ the knowledge acquired to calibrate those devices.
4. Analyze the mathematical modeling of physical systems, including mechanical and electrical systems
5. Utilize the data acquisition device and its PC software.

6. **POLICIES**

Anti-Discrimination
The Faculty of Engineering is concerned with ensuring an environment that is free of all discrimination. If there is a problem, individuals are reminded that they should contact the Department Chair, the Sexual Harassment Officer or the Human Rights Consultant, as soon as possible.

Academic Integrity
You are required to exhibit honestly and use ethical behaviour in all aspects of the learning process. Academic credentials you earn are rooted in principles of honesty and academic integrity.

Academic dishonesty is to knowingly act of fail to act in a way that results or could result in unearned academic credit or advantage. This behaviour can result in serious consequences e.g. the grade of zero on an assignment, loss of credit with a notation on the transcript (notation reads: “Grade of F assigned for academic dishonesty”), and/or suspension or expulsion from the university.

It is your responsibility to understand what constitutes academic dishonesty. For information on the various kinds of academic dishonesty please refer to the Academic Integrity Policy, located at: http://www.mcmaster.ca/policy/Students-AcademicStudies/AcademicIntegrity.pdf.
The following illustrates only three forms of academic dishonesty:

1. Plagiarism. E.g. the submission of work that is not own or for which other credit has been obtained
2. Improper collaboration in group work
3. Copying or using unauthorized aids in tests and examinations.

Requests for Relief for Missed Academic Term Work (Assignments, Mid-Terms, etc.)

The McMaster Student Absence Form is an on-line self-reporting tool for Undergraduate Students to report absences for:

1) Relief for missed academic work worth less than 25% of the final grade resulting from medical or personal situations lasting up to three calendar days:
 - Students may submit a maximum of one academic work missed request per term. It is the responsibility of the student to follow up with instructors immediately (within the 3 day period that is specified in the MSAF) regarding the nature of the accommodation. All work due in that time period however can be covered by one MSAF.
 - MSAF cannot be used to meet religious obligation or celebration of an important religious holiday, for that has already been completed or attempted or to apply for relief for any final examination or its equivalent.

2) For medical or personal situations lasting more than three calendar days, and/or for missed academic work worth 25% or more of the final grade, and/or for any request for relief in a term where the MSAF has not been used previously in that term:
 - Students must visit their Associate Dean’s Office (Faculty Office) and provide supporting documentation.

E-Learning Policy

Consistent with the Bachelor of Technology’s policy to utilize e-learning as a complement to traditional classroom instruction, students are expected to obtain appropriate passwords and accounts to access Avenue To Learn for this course. Materials will be posted by class for student download. It is expected that students will avail themselves of these materials prior to class. Students should be aware that, when they access the electronic components of this course, private information such as first and last names, user names for the McMaster e-mail account, and program affiliation may become apparent to all other students in the course. The available information is dependent on the technology used. Continuation in this course will be deemed consent to this disclosure. If you have any questions or concerns about this disclosure please discuss this with the course instructor. Avenue can be accessed via http://avenue.mcmaster.ca.

Communications

It is the student’s responsibility to:
- Maintain current contact information with the University, including address, phone numbers, and emergency contact information.
- Use the University provided e-mail address or maintain a valid forwarding e-mail address.
- Regularly check the official University communications channels. Official University communications are considered received if sent by postal mail, by fax, or by e-mail to the student’s designated primary e-mail account via their @mcmaster.ca alias.
- Accept that forwarded e-mails may be lost and that e-mail is considered received if sent via the student’s @mcmaster.ca alias.
- Check the McMaster/Avenue email and course websites on a regular basis during the term.

Turnitin (Optional)

This course will be using a web-based service (Turnitin.com) to reveal plagiarism. Students submit their assignment/work electronically to Turnitin.com where it is checked against the internet, published works and Turnitin’s database for similar or identical work. If Turnitin finds similar or identical work that has not been properly cited, a report is sent to the instructor showing the student’s work and the original source. The instructor reviews what Turnitin has found and then determines if he/she thinks there is a problem with the work. Students
who do not wish to submit their work to Turnitin.com must still submit a copy to the instructor. No penalty will be assigned to a student who does not submit work to Turnitin.com. All submitted work is subject to normal verification that standards of academic integrity have been upheld (e.g., on-line search, etc.). To see the Turnitin.com Policy, please go to http://www.mcmaster.ca/academicintegrity/turnitin/students/

Protection of Privacy Act (FIPPA)

The Freedom of Information and Protection of Privacy Act (FIPPA) applies to universities. Instructors should take care to protect student names, student numbers, grades and all other personal information at all times. For example, the submission and return of assignments and posting of grades must be done in a manner that ensures confidentiality.

http://www.mcmaster.ca/univsec/fippa/fippa.cfm

Academic Accommodation of Students with Disabilities Policy

Students who require academic accommodation must contact Student Accessibility Services (SAS) to make arrangements with a Program Coordinator. Academic accommodations must be arranged for each term of study. Student Accessibility Services can be contacted by phone 905-525-9140 ext. 28652 or e-mail sas@mcmaster.ca. For further information consult McMaster’s policy for Academic Accommodation of Students with Disabilities

Students must forward a copy of the SAS accommodation to the instructor of each course and to the Program Administrator of the B.Tech. Program immediately upon receipt. If a student with a disability chooses NOT to take advantage of a SAS accommodation and chooses to sit for a regular exam, a petition for relief may not be filed after the examination is complete. http://sas.mcmaster.ca

Student Code of Conduct

The Student Code of Conduct (SCC) exists to promote the safety and security of all the students in the McMaster community and to encourage respect for others, their property and the laws of the land. McMaster University is a community which values mutual respect for the rights, responsibilities, dignity and well-being of others. The purpose of the Student Code of Conduct is to outline accepted standards of behavior that are harmonious with the goals and the well-being of the University community, and to define the procedures to be followed when students fail to meet the accepted standards of behavior. All students have the responsibility to familiarize themselves with the University regulations and the conduct expected of them while studying at McMaster University.