MechEng 714: SOLIDIFICATION PROCESSING

COURSE GOALS AND OBJECTIVES

INSTRUCTORS Dr. Sumanth Shankar
Telephone: (905) 512-1324
Email: Shankar@mcmaster.ca

SCHEDULE Monday 13:00 to 16:00 hours (1pm to 4pm)

LOCATION JHE/323

TEXT Course notes will be provided in the duration of the course.
The following textbooks were used in developing the course material
(1) W. Kurz and D.J Fischer, Fundamentals of Solidification 4th Revised Edition,
(2) M. Flemings, Solidification Processing, McGraw-Hill Inc., USA 1974
(3) D. M. Stefanescu, Science and Engineering of Casting Solidification, Second
(4) Solidification and Casting, Eds. B. Cantor and K. O’Reilly, Institute of
(5) M.E. Glicksman, Principles of Solidification: An Introduction to Modern
and several others; use the library

GOALS To gain a new appreciation for the art of solidification processing (casting) through
the rigours of a fundamental understanding of the science.

OBJECTIVES Upon completion of this course the student should be able to:
• Know various solidification processes (casting).
• Understand the structure of liquid metals and alloys, broadly.
• Analyze heat transport in solidification.
• Understand pure metal solidification.
• Understand alloy solidification through heat and mass transport.
• Relate solidification microstructure to process conditions.
• Evaluate solidification parameters from experiment results.
• Gain insight in numerical models for solidification
• Knowledge about defects formed during solidification.
• Appreciate recent advances in the field of near net shaped casting.

GRADING Tentative (subject to change with
advanced notice)
Group Assignments 60%
Midterm Examination 20%
Final Exam 20%
ALL DIGITAL SUBMISSIONS FOR GRADING MUST ADHERE TO HIGH STANDARDS AKIN TO THAT IN NOTABLE JOURNAL PUBLICATIONS.

Each week will have a set of specific learning outcome, which shall be the focus of the weekly lectures and practice problems given to students to work on their own time. The students’ efforts on the practice problems will not be graded but will certainly enhance knowledge on the topic and prove beneficial during exams.
COURSE OUTLINE

<table>
<thead>
<tr>
<th>Week Number</th>
<th>Topics</th>
<th>Details</th>
</tr>
</thead>
</table>
| | Solidification Processes (Casting in today’s Commerce) | Historical Perspective of Casting
Length Scales
DC and Continuous Casting Processes
Net Shaped Casting Processes
Necessity of the Variety of Processes
Casting Materials and Applications
Future Prospects |
| | Liquid to Solid | Atomic Structure of Liquid Metals and Alloys
Atomic Bonding and Flow of Metallic Liquids
Theory of Metallic Liquid State
Transformation of Liquid to Solid
Latent Heat of Fusion
Pure and Binary Systems
Introduction to Eutectics and Peritectics |
| | Thermodynamics of Solidification | Free Energy
Entropy and Reversibility
Energy Balances
Source Term Generation
Sharp Interface Energetics (Stefan’s Problem)
Shrinkage and Chvorinov’s Rule |
| | Energy Transport | Heat Flow
Rate of Solidification
Analyze a laboratory experiment of Unidirectional solidification. |
| | Solute Redistribution | Solid-Liquid Interface
Fluid Feedability (Capillarity)
Diffusion and Convection/Advection
Solid/Liquid Interface Characteristics
Constitutional Undercooling
Stability of solidifying interface
Mullins-Sekerka Stability Criterion
Interface gradient and velocity relationships |
| | Solute Redistribution | Perturbation Analyses of S/L Interface
Analytical Models of Solute Redistribution |
| | Solidification Microstructure | Growth of Perturbed Interface
Ivantsov’s Proposition
The Mushy Zone
Planar/Cellular/Dendritic Growth
Macrosegregation
Solute Microsegregation
Atomically Rough and Smooth Interface
Growth Directionality and Morphology (Interface Surface Stiffness) |
| | Solidification Microstructure | S/L Interface Undercooling
Polyphase solidification
Eutectic Solidification
Peritectic Solidification
Solute Trapping
Rapid Solidification |
| | Nucleation | Homogeneous Nucleation
Heterogeneous Nucleation
Grain Refinement |
| Solidification Defects | Dissolved Gas
Pin Holes
Porosity
Shrinkage
Hot Tear
Inclusions |
|------------------------|--|
| Fluid Dynamics | Fluid Flow during Mould Filling (Macro)
Ten rules for Good Casting
Micro Scale Fluid Flow
Effect of Forced Convection on Microstructure
Non-Dendritic Castings |