Signals and Systems for Engineering provides an introduction to analog and digital signal processing. The ideas to be explored form an essential part of many areas, including seismic data processing, communications, speech processing, image processing, and electronics.

The course presents the basic concepts for continuous and discrete signals and systems in the time and frequency domains. These representations are related through the Laplace and Fourier transform, which are explored in detail. System response modelling, filtering and filter design, modulation, and sampling for both analog and digital systems, as well as the basic concepts of feedback control, are discussed and illustrated.

Prerequisite(s): Registration in Level III or above of any Engineering or Science program
Antirequisite(s): IBEHS 3A03

Professor A P Knights
JHE A318/A
aknight@mcmaster.ca
ext. 27224

Office Hours:
By appointment

Dawson Bonneville
BSB B201
bonnevd@mcmaster.ca

Office Hours:
By appointment

http://avenue.mcmaster.ca/
Students who complete this course successfully will have an understanding of, and ability to execute, system modelling for a range of applications including those associated with:

- Complex system response
- System feedback and control
- Filtering
- Sampling
- Modulation

MATERIALS AND FEES

Suggested Texts:
- “Engineering Signals and Systems”, Ulaby and Yagle, NTS press
- “Signals and Systems”, Oppenheim and Willsky, Prentice-Hall

Calculator:
Only the McMaster Standard Calculator will be permitted in tests and examinations. This is available at the Campus Store.

Other Materials:
The course will make significant use of MatLab

COURSE OVERVIEW

<table>
<thead>
<tr>
<th>Week</th>
<th>Topic</th>
<th>Readings</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Types of signals, signal transformations, waveforms, power and energy</td>
<td>See course texts</td>
</tr>
<tr>
<td>2</td>
<td>LTI systems, impulse response, convolution</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>LTI sinusoidal response, impulse response to 2(^{nd}) order LCCDES, the car suspension model</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Laplace Transforms, poles and zeros, the transfer function, system stability</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Applications of the Laplace transform, s-domain circuit analysis</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Basic control theory, temperature control systems</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Fourier analysis techniques, phasor-domain, Fourier series</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Fourier transform, Parsevals theorem, circuit analysis</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Applications of the Fourier transform, filtering, filetr design with poles and zeros</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Amplitude modulation and introduction to sampling theory</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Discrete notation and comparison with continuous signals</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Discrete transfer function, frequency response and the FFT</td>
<td></td>
</tr>
</tbody>
</table>

ASSESSMENT

<table>
<thead>
<tr>
<th>Component</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Weekly quiz</td>
<td>10 quizzes @2% each (total = 20%)</td>
</tr>
<tr>
<td>Computer Lab</td>
<td>5 labs @8% each (total = 40%)</td>
</tr>
</tbody>
</table>
Final Exam 40%
Total 100%

ACCREDITATION LEARNING OUTCOMES

The Learning Outcomes defined in this section are measured for Accreditation purposes only, and will not be directly taken into consideration in determining a student’s actual grade in the course.

<table>
<thead>
<tr>
<th>Outcomes</th>
<th>Indicators</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Knowledge base for Engineering</td>
<td>1.1 Competence in Mathematics</td>
</tr>
<tr>
<td>2. Problem analysis</td>
<td>2.1, 2.2 Identify assumptions, identify fundamentals</td>
</tr>
<tr>
<td>5. Use of Engineering Tools</td>
<td>5.2 Use of modern tools (specifically for modelling)</td>
</tr>
</tbody>
</table>

For more information on Accreditation, please visit: https://www.engineerscanada.ca

ACADEMIC INTEGRITY

You are expected to exhibit honesty and use ethical behaviour in all aspects of the learning process. Academic credentials you earn are rooted in principles of honesty and academic integrity.

Academic dishonesty is to knowingly act or fail to act in a way that results or could result in unearned academic credit or advantage. This behaviour can result in serious consequences, e.g. the grade of zero on an assignment, loss of credit with a notation on the transcript (notation reads: ‘Grade of F assigned for academic dishonesty’), and/or suspension or expulsion from the university.

It is your responsibility to understand what constitutes academic dishonesty. For information on the various types of academic dishonesty please refer to the Academic Integrity Policy, located at http://www.mcmaster.ca/academicintegrity

The following illustrates only three forms of academic dishonesty:

1. Plagiarism, e.g. the submission of work that is not one’s own or for which other credit has been obtained.
2. Improper collaboration in group work.
3. Copying or using unauthorized aids in tests and examinations.

ACADEMIC ACCOMMODATIONS

Students who require academic accommodation must contact Student accessibility Services (SAS) to make arrangements with a Program Coordinator. Academic accommodations must be arranged for each term of study.
NOTIFICATION OF STUDENT ABSENCE AND SUBMISSION OF REQUEST FOR RELIEF FOR MISSED ACADEMIC WORK

1. The McMaster Student Absence Form is a self-reporting tool for Undergraduate Students to report absences DUE TO MINOR MEDICAL SITUATIONS that last up to 3 days and provides the ability to request accommodation for any missed academic work. Please note this tool cannot be used during any final examination period.

2. You may submit a maximum of 1 Academic Work Missed request per term. It is YOUR responsibility to follow up with your Instructor immediately (NORMALLY WITHIN TWO WORKING DAYS) regarding the nature of the accommodation. Relief for missed academic work is not guaranteed.

3. If you are absent for reasons other than medical reasons, for more than 3 days, or exceed 1 request per term you MUST visit the Associate Dean's Office (JHE/H301). You may be required to provide supporting documentation.

4. This form must be submitted during the period of absence or the following day, and is only valid for academic work missed during this period of absence.

5. It is the prerogative of the instructor of the course to determine the appropriate relief for missed term work in his/her course.

6. You should expect to have academic commitments Monday through Saturday but not on Sunday or statutory holidays. If you require an accommodation to meet a religious obligation or to celebrate an important religious holiday, you may submit the Academic Accommodation for Religious, Indigenous and Spiritual Observances (RISO) Form to the Associate Dean’s Office. You can find all paperwork needed here: https://www.eng.mcmaster.ca/programs/academic-advising

NOTICE REGARDING POSSIBLE COURSE MODIFICATION

The instructor and university reserve the right to modify elements of the course during the term. The university may change the dates and deadlines for any or all courses in extreme circumstances. If either type of modification becomes necessary, reasonable notice and communication with the students will be given with explanation and the opportunity to comment on changes. It is the responsibility of the student to check their McMaster email and course websites weekly during the term and to note any changes.

TURNITIN.COM STATEMENT

In this course we will be using a web-based service (Turnitin.com) to reveal plagiarism. Students will be expected to submit their work electronically to Turnitin.com and in hard copy so that it can be checked for academic dishonesty. Students who do not wish to submit their work to Turnitin.com must still submit a copy to the instructor. No penalty will be assigned to a student who does not submit work to Turnitin.com. All submitted work is subject to normal verification that standards of academic integrity have been upheld (e.g., on-line search, etc.). To see the Turnitin.com Policy, please go to http://www.mcmaster.ca/academicintegrity/.
ON-LINE STATEMENT FOR COURSES REQUIRING ONLINE ACCESS OR WORK

In this course, we will be using ATL. Students should be aware that, when they access the electronic components of this course, private information such as first and last names, user names for the McMaster e-mail accounts, and program affiliation may become apparent to all other students in the same course. The available information is dependent on the technology used. Continuation in this course will be deemed consent to this disclosure. If you have any questions or concerns about such disclosure, please discuss this with the course instructor.

REFERENCE TO RESEARCH ETHICS

The two principles underlying integrity in research in a university setting are these: a researcher must be honest in proposing, seeking support for, conducting, and reporting research; a researcher must respect the rights of others in these activities. Any departure from these principles will diminish the integrity of the research enterprise. This policy applies to all those conducting research at or under the aegis of McMaster University. It is incumbent upon all members of the university community to practice and to promote ethical behaviour. To see the Policy on Research Ethics at McMaster University, please go to http://www.mcmaster.ca/policy/faculty/Conduct/ResearchEthicsPolicy.pdf.