Course Outline

1. COURSE INFORMATION

<table>
<thead>
<tr>
<th>Session Offered</th>
<th>Winter 2017</th>
</tr>
</thead>
<tbody>
<tr>
<td>Course Name</td>
<td>Thermodynamics and Heat Transfer</td>
</tr>
<tr>
<td>Course Code</td>
<td>AUTO TECH 2TS3</td>
</tr>
</tbody>
</table>
| **Date(s) and Time(s) of lectures** | Wednesday 11:30 – 12:20 in JHE/326H
Friday 13:30 – 15:20 in MARC/266 |
| **Program Name** | Automotive and Vehicle Technology |
| **Calendar Description** | Thermodynamic principles; heat engines; gas turbine cycles; air conditioning; conductive, convective and radiative heat transfer, heat transfer coefficients, heat exchangers, vehicle thermal management components and systems. |

| Instructor(s) | Lecture: Kostas Apostolou
Labs: George Apostol |
|---------------|-------------------------|
| **E-Mail** | apostol@mcmaster.ca
apostog@mcmaster.ca |
| **Office Hours & Location** | ETB/207
Office Hours & Location: |

2. COURSE SPECIFICS

Course Description
This course examines heat transfer and thermodynamic principles. Heat transfer subject covered are: one-dimensional planar and radial conduction without heat generation; heat transfer from fins; simple approximations to transient systems; external and internal forced convection; introduction to radiation; basic heat exchanger calculations. Thermodynamic principles examined are: energy balances using enthalpy, work, and heat; methods for calculations of thermodynamics properties; steam tables; second law of thermodynamics and entropy; isentropic processes; vapour power cycles; and refrigeration cycles. Applications are primarily from the automotive sector. Labs enhance theory offering experience in temperature measurement, cooling and heating systems, heat exchangers, and radiators. Design aspects are addressed through a mandatory student thought and executed lab project on heat transfer or thermodynamics.

Instruction Type

<table>
<thead>
<tr>
<th>Code</th>
<th>Type</th>
<th>Hours per term</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>Classroom instruction</td>
<td>37</td>
</tr>
<tr>
<td>L</td>
<td>Laboratory, workshop or fieldwork</td>
<td>36</td>
</tr>
<tr>
<td>T</td>
<td>Tutorial</td>
<td></td>
</tr>
<tr>
<td>DE</td>
<td>Distance education</td>
<td></td>
</tr>
</tbody>
</table>

Total Hours
Total Hours: 73

Resources

<table>
<thead>
<tr>
<th>ISBN</th>
<th>Textbook Title & Edition</th>
<th>Author & Publisher</th>
</tr>
</thead>
</table>

Other Supplies

<table>
<thead>
<tr>
<th>Source</th>
<th></th>
</tr>
</thead>
</table>

Prerequisite(s)
AUTOTECH 2AE3; ENG TECH 1CH3, 1MT3, 1PH3, and registration in level II or above of the Automotive and Vehicle Technology program.
<table>
<thead>
<tr>
<th>Corequisite(s)</th>
<th>N/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antirequisite(s)</td>
<td>N/A</td>
</tr>
</tbody>
</table>
| **Course Specific Policies** | The course includes a lecture component and a lab component.
A minimum of 50% for the lab component and a minimum of 45% for the lecture component are required to pass the course.
Assignments:
Problems will be assigned, but will not be graded. Final answers to assigned problems will be provided. Solutions to assigned problems may be posted.
Lab Sessions:
Absence from a lab without an approved MSAF will result in a grade of zero for the lab.
Details for number of labs and lab reports will be outlined during first week of labs. |
| **Departmental Policies** | Students must maintain a GPA of 3.5/12 to continue in the program.
In order to achieve the required learning objectives, on average, B.Tech. students can expect to do at least 3 hours of “out-of-class” work for every scheduled hour in class. “Out-of-class” work includes reading, research, assignments and preparation for tests and examinations.
Where group work is indicated in the course outline, such collaborative work is mandatory.
The use of cell phones, iPods, laptops and other personal electronic devices are prohibited from the classroom during the class time, unless the instructor makes an explicit exception.
Announcements made in class or placed on Avenue are considered to have been communicated to all students including those individuals that are not in class.
Instructor has the right to submit work to software to identify plagiarism. |
| **3. SUB TOPIC(S)** |
Week 1
Heat transfer intro including radiation
Conduction: One dimensional
[15]
[16.1, 16.2]
Week 2
Conduction: extended surfaces
[16.4]
Week 3
Conduction: Transient (Lumped Capacitance Method)
[16.5]
Week 4
Convection: forced, external
[17.1, 17.2]
Week 5
Test 1: 2 hours
Convection: forced, internal
[17.3]
Week 6
Convection: forced, internal
Heat Exchangers: Design of Concentric Tubes
[17.3]
[17.5]
Week 7
Heat Exchangers: Design of Concentric Tubes
[17.5]
Mid-term Recess: Monday, February 20 to Sunday, February 26, 2017
Week 8
Radiation
[18.1 – 18.3]
Week 9
Energy Types and Conservation. First Law of Thermodynamics
[3]
Week 10
Evaluating properties of substances: \(C_p, C_v\), Steam Tables
[4.1, 4.3, 4.5-7]
Week 11
Second law of thermodynamics
[6]
Week 12
Second Law of thermodynamics.
Test 2: 2 hours
[6]
Week 13
Entropy
Vapour power cycles: Rankine cycle
[7.1, 7.6-8]
[8.1 – 8.3] |
Classes end: Thursday, April 6, 2017
Final examination period: Tuesday, April 11 to Thursday, April 27, 2017
All examinations MUST be written during the scheduled examination period.

List of experiments

<table>
<thead>
<tr>
<th>Lab</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Temperature Measurement Methods & Excel Introduction</td>
</tr>
<tr>
<td>2</td>
<td>Heat Flux & Contact Resistance</td>
</tr>
<tr>
<td>3</td>
<td>Infinite Fins & Adiabatic Fins</td>
</tr>
<tr>
<td>4</td>
<td>Convective Cooling – Lumped Capacitance Method</td>
</tr>
<tr>
<td>5</td>
<td>Convective Cooling – Fins & Fan</td>
</tr>
<tr>
<td>6</td>
<td>Convective Heating – Small Radiators</td>
</tr>
</tbody>
</table>

Mid-term Recess: Monday, February 20 to Sunday, February 26, 2017

<table>
<thead>
<tr>
<th>Lab</th>
<th>Experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Closed Fluid Loop Radiator</td>
</tr>
<tr>
<td>8</td>
<td>Shell & Tube Heat Exchanger (Parallel Flow & Counter Flow)</td>
</tr>
<tr>
<td>9</td>
<td>Design Project: Brainstorming</td>
</tr>
<tr>
<td>10</td>
<td>Design Project: Prototype Construction</td>
</tr>
<tr>
<td>11</td>
<td>Design Project: Project Hardware Tryout & Preliminary Data Collection</td>
</tr>
<tr>
<td>12</td>
<td>Project Presentation</td>
</tr>
</tbody>
</table>

Note that this structure represents a plan and is subject to adjustment term by term.
The instructor and the University reserve the right to modify elements of the course during the term. The University may change the dates and deadlines for any or all courses in extreme circumstances. If either type of modification becomes necessary, reasonable notice and communication with the students will be given with explanation and the opportunity to comment on changes.

4. ASSESSMENT OF LEARNING *including dates*

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mid-term tests (February 5th and April 1st)</td>
<td>30%</td>
</tr>
<tr>
<td>On-line and in-class quizzes</td>
<td>15%</td>
</tr>
<tr>
<td>Lab Project</td>
<td>10%</td>
</tr>
<tr>
<td>Labs</td>
<td>20%</td>
</tr>
<tr>
<td>Final examination (tests cumulative knowledge)</td>
<td>25%</td>
</tr>
</tbody>
</table>

TOTAL 100%

Percentage grades will be converted to letter grades and grade points per the University calendar.

5. LEARNING OUTCOMES

1. Apply the energy conservation equation to calculate temperature profiles in one dimension with and without energy generation and with possible convective cooling.

2. Select the appropriate convection heat transfer coefficient relationship for internal and external flow cases.

3. Perform transient conduction calculations using the lumped capacitance model

4. Combine convection and conduction principles for the sizing and design of shell-and-tube heat exchangers.

5. Recall the first two laws of thermodynamics and how to use tables of thermodynamic data.

6. Apply thermodynamic principles to the analysis of simplified internal combustion and gas power cycles.

7. Perform experimental measurements and observations on heat transfer and thermodynamics systems and report on experimental findings while comparing to theoretical predictions.

8. Design, build, and test a system for energy recovery in a vehicle or home application.

6. POLICIES

Anti-Discrimination
The Faculty of Engineering is concerned with ensuring an environment that is free of all discrimination. If there is a problem, individuals are reminded that they should contact the Department Chair, the Sexual Harassment Officer or the Human Rights Consultant, as soon as possible.
Academic Integrity

You are required to exhibit honestly and use ethical behaviour in all aspects of the learning process. Academic credentials you earn are rooted in principles of honesty and academic integrity.

Academic dishonesty is to knowingly act or fail to act in a way that results or could result in unearned academic credit or advantage. This behaviour can result in serious consequences e.g. the grade of zero on an assignment, loss of credit with a notation on the transcript (notation reads: “Grade of F assigned for academic dishonesty”), and/or suspension or expulsion from the university.

It is your responsibility to understand what constitutes academic dishonesty. For information on the various kinds of academic dishonesty please refer to the Academic Integrity Policy, located at: http://www.mcmaster.ca/policy/Students-AcademicStudies/AcademicIntegrity.pdf.

The following illustrates only three forms of academic dishonesty:
1. Plagiarism. E.g. the submission of work that is not own or for which other credit has been obtained
2. Improper collaboration in group work
3. Copying or using unauthorized aids in tests and examinations.

Requests for Relief for Missed Academic Term Work (Assignments, Mid-Terms, etc.)

The McMaster Student Absence Form is an on-line self-reporting tool for Undergraduate Students to report absences for:

1) Relief for missed academic work worth less than 25% of the final grade resulting from medical or personal situations lasting up to three calendar days:
 - Students may submit a maximum of one academic work missed request per term. It is the responsibility of the student to follow up with instructors immediately (within the 3 day period that is specified in the MSAF) regarding the nature of the accommodation. All work due in that time period however can be covered by one MSAF.
 - MSAF cannot be used to meet religious obligation or celebration of an important religious holiday, for that has already been completed or attempted or to apply for relief for any final examination or its equivalent.

2) For medical or personal situations lasting more than three calendar days, and/or for missed academic work worth 25% or more of the final grade, and/or for any request for relief in a term where the MSAF has not been used previously in that term:
 - Students must visit their Associate Dean’s Office (Faculty Office) and provide supporting documentation.

E-Learning Policy

Consistent with the Bachelor of Technology’s policy to utilize e-learning as a complement to traditional classroom instruction, students are expected to obtain appropriate passwords and accounts to access Avenue To Learn for this course. Materials will be posted by class for student download. It is expected that students will avail themselves of these materials prior to class. Students should be aware that, when they access the electronic components of this course, private information such as first and last names, user names for the McMaster e-mail account, and program affiliation may become apparent to all other students in the course. The available information is dependent on the technology used. Continuation in this course will be deemed consent to this disclosure. If you have any questions or concerns about this disclosure please discuss this with the course instructor. Avenue can be accessed via http://avenue.mcmaster.ca.

Communications

It is the student’s responsibility to:

- Maintain current contact information with the University, including address, phone numbers, and emergency contact information.
- Use the University provided e-mail address or maintain a valid forwarding e-mail address.
- Regularly check the official University communications channels. Official University communications are considered received if sent by postal mail, by fax, or by e-mail to the student’s designated primary e-mail account via their @mcmaster.ca alias.
- Accept that forwarded e-mails may be lost and that e-mail is considered received if sent via the student’s @mcmaster.ca alias.
- Check the McMaster/Avenue email and course websites on a regular basis during the term.

Turnitin (Optional)

This course will be using a web-based service (Turnitin.com) to reveal plagiarism. Students submit their assignment/work electronically to Turnitin.com where it is checked against the internet, published works and Turnitin’s database for similar or identical work. If Turnitin finds similar or identical work that has not been properly cited, a report is sent to the instructor showing the student’s work and the original source. The instructor reviews what Turnitin has found and then determines if he/she thinks there is a problem with the work. Students who do not wish to submit their work to Turnitin.com must still submit a copy to the instructor. No penalty will be assigned to a student who does not submit work to Turnitin.com. All submitted work is subject to normal verification that standards of academic integrity have been upheld (e.g., on-line search, etc.). To see the Turnitin.com Policy, please go to http://www.mcmaster.ca/academicintegrity/turnitin/students/

Protection of Privacy Act (FIPPA)

The Freedom of Information and Protection of Privacy Act (FIPPA) applies to universities. Instructors should take care to protect student names, student numbers, grades and all other personal information at all times. For example, the submission and return of assignments and posting of grades must be done in a manner that ensures confidentiality.
http://www.mcmaster.ca/univsec/fippa/fippa.cfm

Academic Accommodation of Students with Disabilities Policy

Students who require academic accommodation must contact Student Accessibility Services (SAS) to make arrangements with a Program Coordinator. Academic accommodations must be arranged for each term of study. Student Accessibility Services can be contacted by phone 905-525-9140 ext. 28652 or e-mail sas@mcmaster.ca. For further information consult McMaster’s policy for Academic Accommodation of Students with Disabilities

Students must forward a copy of the SAS accommodation to the instructor of each course and to the Program Administrator of the B.Tech. Program immediately upon receipt. If a student with a disability chooses NOT to take advantage of a SAS accommodation and chooses to sit for a regular exam, a petition for relief may not be filed after the examination is complete. http://sas.mcmaster.ca

Student Code of Conduct

The Student Code of Conduct (SCC) exists to promote the safety and security of all the students in the McMaster community and to encourage respect for others, their property and the laws of the land. McMaster University is a community which values mutual respect for the rights, responsibilities, dignity and well-being of others. The purpose of the Student Code of Conduct is to outline accepted standards of behavior that are harmonious with the goals and the well-being of the University community, and to define the procedures to be followed when students fail to meet the accepted standards of behavior. All students have the responsibility to familiarize themselves with the University regulations and the conduct expected of them while studying at McMaster University.
http://studentconduct.mcmaster.ca/student_code_of_conduct.html