

Course Outline

1. COURSE INFORMATION								
Session Offered	Spring/S	ummer 2024						
Course Name	Engineering Mechanics							
Course Code	MECH ENG 3A03							
Program Name	Bachelor of Mechanical Engineering							
Calendar Description	Singularity functions, generalized Hooke's law; shear stress, shear flow in							
	beams; shear centre. Biaxial and unsymmetrical bending, analysis of							
	indeterminate beams and frames using energy methods, impact loads.							
	Buckling of compression members. Introduction to yield criteria.							
Instructor	Dr. Eu-Gene Ng			Phone: 905 525 9140 Ext. 27916				
				E-Mail: nge@mcmaster.ca				
T.As	T.A. Email							
Player, Matthew	playerm	@mcmaster.@	са					
2. COURSE SPECIFICS								
Course Description	This courses deals with analyzing of structure under combined loading (axial,							
	bending, shear and torsion) and designing or selecting the appropriate							
	prismatic beams. The design criteria of the structure can be based on ductile							
	or brittle failure. The selection of the loaded structure can be a function of							
	deflection, stresses or instability (Buckling). Identify the operating limits of the							
	fundamental mechanics of structure analysis.							
In star at a Tana	Code Type				Hours per term			
Instruction Type	C Classroom Instruction			orfieldwork	48			
	L T	Tutorial	workshop					
	DE Distance education							
Resources			Textboo	ok Title & Edition	Author & Publisher			
nesources	978-1-260-56997-1		Mecha	nics of Materials	Beer, Johnston, Dewolf and			
					Mazurek.			
					McGraw Hill Education			
	Other Supplies			Source				
Prerequisite(s)	MECH ENG 2P04							
Corequisite(s)								
Antirequisite(s)								
Course Specific Policies	This cou	irse will be us	sing a rang	ge of software. Stu	idents should be aware that,			
	when they access the electronic components of this course, private information							
	such as first and last names, user names for the McMaster e-mail accounts, and							
	progran	program amiliation may become apparent to all other students in the same						
	Continuation in this course will be deemed concent to this disclosure.							
	continuation in this course will be deemed consent to this disclosure. If you							
	nave any questions or concerns about such disclosure please discuss this with							

Departmental Policies Students must maintain a GPA of 4.0 on a 12 point scale to continue in the program.
The use of cell phones, iPods, laptops and other personal electronic devices are prohibited from the classroom during the class time, unless the instruct makes an explicit exception.
been communicated to all students including those not in class.

Wk 1	07 May – 09 May		Course Outline, Intro, Centric Buckling
Wk 2	14 May – 16 May		Euler's Extended Theory to Buckling and Eccentric Buckling
	15 May	HW01	
			Eccentric Buckling and Normal Stresses Induced by Bending
Wk 3	21 May – 23 May		Moment
	22 May	HW02	
Wk 4	28 May – 30 May		Centric and Eccentric Symmetrical Bending
	29 May	HW03	
Wk 5	04 June		Centric and Eccentric Unsymmetrical Bending
	06 June		Test 1: HW01, HW02, HW03
Wk 6	11 June – 13 June		Combined Loading and Shearing Stresses
	12 June	HW04	
Wk 7	18 June – 20 June		Shearing Stresses
	19 June	HW05	
Wk 8	25 June – 27 June		No lecture
Wk 09	02 July – 04 July		Shearing Stresses for Thin Wall and Longitudinal Shear
	03 July	HW06	
Wk 10	09 July		Longitudinal Shear
	11 July		Test 2: HW04, HW05, HW06
Wk 11	16 July – 18 July		Combined Loading
	17 July	HW07	
Wk 12	23 July – 25 July		Combined Loading and 2D Mohr Circle
		HW08	
Wk 13	30 July – 01 Aug		3D Mohr Circle and Yield Criteria
Wk 14	06 Aug		Design and Analysis of Beams
	08 Aug		Final Exam: HW03, HW04, HW05, HW06, HW07, HW08

Note that this structure represents a plan and is subject to adjustment term by term.

The instructor and the University reserve the right to modify elements of the course during the term. The University may change the dates and deadlines for any or all courses in extreme circumstances. If either type of modification becomes necessary, reasonable notice and communication with the students will be given with explanation and the opportunity to comment on changes.

4. ASSESSMENT OF LEARNING

Homework (10 in total) 0.5% would be deducted when each homework are	10%					
submitted late with or without MSAF. Marks are based on completion.						
Term Test (Two term tests) Students getting 25 to 49/100 for the test are	50%					
required to do a correction test. The highest grade for the correction term						
test is 50/100. If the grade is less than 24.9/100, no correction test will be						
allowed.						
Final Examination	40%					
TOTAL	100%					
Course results determined on a percentage scale will be converted to an official letter grade, as						
indicated in the Undergraduate Calendar. The results of all courses attempted will appear on your						
transcript as letter grades.						
5. LEARNING OUTCOMES						
1. Analyze structure under combined loading and designing the appropriate prismatic beams.						
2. Calculate principal stresses from normal and shear stresses in three dimensional configuration.						
3. Design and specify structure which are made of either ductile or brittle materials.						
4. Design of beams based on either structure deflection, stresses or buckling.						
5. Evaluate strain measurement in specific directions into principal strain.						
6. Identify the operating limits of the fundamental mechanics of structure analysis.						