Alternative Cathode Substrates for the Na-Air Battery Goward Group Department of Chemistry, Faculty of Science <u>Christopher Franko, Hossein Yadegari, Andy Sun, Yaser Abu-Lebdeh, Gillian Goward*</u>

Reacts Na and $O_{2(g)}$ to release energy and form oxides on discharge. Oxides are broken down into Na and O₂ on charging cycle

Solid state ²³Na magic angle spinning NMR can be used to distinguish electrochemical products on cycled cathodes

 Na_2O_2 = Formed via twoelectron ORR Higher Energy Density but Low Coulombic Efficiency

 NaO_2 = Formed via single electron ORR High Energy Density & **Coulombic Efficiency**

 $Na_2CO_3 = Formed via$ parasitic side reactions Can not "recharge" if formed, lost capacity

Tailoring Discharge Chemistry at the Cathode

Na-Air coin cells with both hydrophobic and hydrophilic carbon cathodes were discharged in an oxygen environment

Hydrophobic and hydrophilic carbon cathodes are made via H₂ reduction and Hummers method respectively

The hydrophobic surface promotes O_2^- solvation, producing NaO₂ crystals in a solution based mechanism, but NaO₂ degrades quickly

The hydrophilic surface promotes O_2^- adsorption, producing $Na_2O_2 \cdot 2H_2O_2$ and Na_2CO_3 in a surface mediated reaction, products are more stable but the mixture is more amorphous and complex

Hydrophobic environments promote solution formation, via 1e⁻ ORR Hydrophilic environments promote surface mediation, via 2e⁻ ORR

The Na_nO₂ Problem

The instability of NaO₂ extends to all forms of carbon in general, pure NaO₂ was mixed with carbon black to show this:

- 1. More stable, non-carbon, cathodes that can be oxidatively stable toward NaO₂ or Na₂O₂'s high potentials need to be explored
- Higher voltage electrolytes need to be tested to withstand the 2. high voltages needed to recharge Na₂O₂ based cells

Current projects in the Goward group are investigating each of these

We acknowledge the support the Ontario Research Fund: Research Excellence Program

