Multiphase Drives for EV Applications Centre for Mechatronics and Hybrid Technology Electrical and Computer Engineering, McMaster University Ahmed Salem

Project Statement

Objectives:

- Develop a six-phase inverter based on the requirements of the drive.
- Reduce the size of the DC-link bank of capacitors.

Tasks:

- Literature review on multiphase drives.
- Build up a scaled down prototype of six-phase inverter.
- Developing new control technique.
- Developing new switching technique for the capacitor sizing.

Why Multiphase Drives

Multiphase Drives Features:

- 1. Lower Power/Current Rating per Phase.
- 2. Fault-tolerance operation.
- 3. Torque density improvement.
- 4. Lower Dc-Link Current Ripples.

The figure shows a schematic of one phase-leg of the inverter used in Tesla Model S which has for the upper part 6 switches connected in parallel. The inverter comprises of 36 IGBT in total. The multiphase concept overcomes the problems associated with paralleling IGBT's.

Modulation Techniques

1. Space Vector Modulation (SVPWM) Based on **Vector Space Decomposition (VSD): Pros**:

• Full control of voltage vectors in different subspaces • Compensation of non-torque production harmonics. Cons:

Requires high computational power.

Requires additional controllers to compensate the effects of machine back EMF's.

2. SVPWM based on voltage classification method

Simple technique in implementation Unable to eliminate the xy subspace harmonics.

Using two references

Using one reference

Fault-Tolerance Capability

• Unlike Three-phase drives, Multiphase drives operates with high torque range under faulty conditions. • Three-phase drives has 29% maximum output torque with output torque ripples under optimal current control. • Six-phase Drives under one-phase loss can operate up till 69.5% under optimal current control with no torque ripples and minimum losses..

Remedial Solution to increase the torque range under single-phase faults:

• The proposal is to provide a neutral connection to the dc-link midpoint and by applying global optimization the torque range reaches 81.6% which represents 11% increasement.

We acknowledge the support of the Ontario Research Fund: **Research Excellence Program**

 $\delta_1^{(2)}\overline{V_1}^{(2)}$

EECOMOBILITY (ORF) & HEVPD&D CREATE

We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC), which invests annually over \$1 billion in people, discovery and innovation.