Fault Detection and Diagnosis for Chiller Centre for Mechatronics and Hybrid Technology

Mechanical Engineering McMaster University Swarnali Mukhopadhyay, Dr. Saeid Habibi

Motivation

global electricity is •17% ot refrigeration consumed by sector

Improper maintenance of these systems cause **15-30%** loss of energy

- Detect and Diagnose commonly occurring faults in vapour compression chillers
- AI based classification for fault and normal conditions using measurement data

Chiller System

- chiller consists of 5 main components: evaporator, condenser the two heat exchangers, compressor. The pressure and temperature of these components are indicator of the health of the system.

• 7 faults are identified which have the highest frequency of occurring in a chiller as well as most cost intensive to repair.

Sr No.	Faults
1	Refrigerant Leak
2	Condenser fouling
3	Reduced Condenser W
4	Reduced Evaporator W
5	Non-Condensables in F
6	Refrigerant Overcharge
7	Excess Oil

Each fault displays a unique pattern of rise and fall of the measured parameters such as temperatures and pressures at different locations on chiller system

	kW	PRE	PRC	TRC_sub	Tsh_suc	Tsh_dis	TEA	TCA	TEI-TEO	TCO-TCI	kW/ton	TO_sump	TO_feed
Reduced Condenser Water Flow					V		V						•
Reduced Evaporator Water Flow	•	▼		*	V	*	•						•
Refrigerant Leak	▼		v	v v v				v			V		
Refrigerant Overcharge		V				•				•		•	•
Excess Oil				•									
Condenser Fouling										•			
Non-condensables in Refrigerant							▼						
Defective Pilot Valve		▲ ▼	•	▲ ▼	▲ ▼	▲ ▼	▲ ▼	V					

Industrial sector* Residential sector Tertiary sector*

Refrigeration

- Agriculture / Forestr
- Other non-specified*

- application of AI more prudent.
- conditions.
- high dimensionality of the data set.

- High dimensional data set is compressed by autoencoder which is trained using unlabelled data
- The compressed data is used as input in the classifier to diagnose normal or fault condition
- Different classifiers such as neural network and SVM are implemented
- The Hybrid model was able to classify all the classes with above 93% of accuracy.
- The machine learning classifier (SVM) performed better than the neural network classifier

EECOMOBILITY (ORF) & HEVPD&D CREATE

AI based FDD

The unique pattern which each fault presents makes

The dataset used is publicly available by ASHRAE. The experimental data was collected by inducing faults in a chiller at various severity fault levels in different operating

A hybrid approach which combines AI feature extraction with machine learning classifier was developed due to the

Hybrid Model