Fault Detection for Lithium-Ion Battery Using SVSF

Centre for Mechatronics and Hybrid Technologies Mechanical Engineering, McMaster University

What and Why							
A battery management system (BMS) is an embedded system which is utilized to ensure safe and effective control of lithium-ion cells and modules in a battery pack, including the State of Charge (SOC) and the State of Health (SOH) estimation.							
The main sensors outputs of the BMS are voltage, current.							
✓ Sensor faults are external fault.							
 They cause BMS failure in SOC, SOH, and Voltage estimations leading to overcharge or discharge of the pack. Predefined faults in current and voltage sensors are simulated and applied to a battery model. The model is estimated separately by SVSF and SVSF-VBL to evaluate these estimators' fault detection and isolation performance compared to EKF. CUSUM algorithm is used in the evaluation phase of the residuals. 							
Equivilant Circuit Model							
Filtering and Residual Residual Evaluation Generation Technique r1,i EKF r2,v SVSF-VBL r2,v							
Fault implementation and detection process map.							
Battery model and Faults							
The discrete-time state equations of the battery model							

$$V_{1,k+1} = \left(1 - \frac{\Delta T}{R_1 C_1}\right) V_{1,k} + \frac{\Delta T}{C_1} i_k,$$
$$SoC_{k+1} = SoC_k - \frac{\eta \Delta T}{C_n} i_k$$

 \checkmark The terminal voltage is the output of the model and is obtained as $V_{T,k} = V_{ocv} (\text{SoC}_k) - V_{1,k} - R_0 i_k$

✓ Battery capacity is 27 Ah

✓ MATLAB lookup tables were used for R, C and OCV.

R. Hosseininejad, M. Al Akchar, F. Ebrahimi, C. Tongkoua, P. Setoodeh, R. Ahmed, S. Habibi.

We acknowledge the support of the Ontario Research Fund: **Research Excellence Program**

EECOMOBILITY (ORF) & HEVPD&D CREATE

Comparison

✓ The table summarizes the threshold values, the detectability and detection delays for the three filters in the presence of four different faults.

	EKF		SVSF		SVSF-VBL	
	SOC	Voltage	SOC	Voltage	SOC	Voltage
old	J = 8500	J = 68	J = 18000	J = 54	J =1560	J = 70
	1504	N/A	1678	N/A	1470	2213
2	N/A	55	N/A	56	N/A	56
3	75	1692	115	2006	62	2007
1	N/A	42	3138	1969	N/A	201

 \checkmark SVSF-VBL can decrease the required fault detection threshold by approximately six times.

✓ This indicates that SVSF-VBL has a higher capability to detect smaller faults compared to EKF and SVSF.

 \checkmark EKF shows superior performance with significantly lower detection delay

✓ For other faults, EKF and SVSF-VBL have almost the same detection time.

Conclusion & Future Work

✓ The study investigates Smooth Variable Structure Filter (SVSF)-based methods for battery cell fault detection with a focus on sensor failures that interfere with the measurement of current and voltage of batteries.

✓ SVSF-based filters were utilized to calculate the battery Charge (SoC) and terminal voltage.

 \checkmark The proposed method shows effectiveness in fault detection, with a lower required threshold than that of the Extended Kalman Filter (EKF) and a similar detection delay for most faults.

✓ The Cumulative Sum (CUSUM) technique increased the accuracy of fault detection, particularly for sticky voltage issues.

 \checkmark The study can help develop better fault-detection strategies for batteries, which can prevent system failures and ensure safe and reliable

References

Complete reference list is available at: https://github.com/Rezahnd/Fault-Detection-Project/blob/ main/References.md

We acknowledge the support of the Natural Sciences and Engineering Council of Canada (NSERC), which invests annually over \$1 billion in people, discovery and innovation.