McMaster University
Department of Mechanical Engineering

Course Outline: ME 705, 2024
Advanced Finite Element Analysis

Instructor: • Dr. Peidong Wu, x20092, peidong@mcmaster.ca

Content: Central to the course is to solve nonlinear problems in solid mechanics with finite element method. It starts with the kinematics of large deformations, together with relevant continuum mechanics. We then go on to describe implementations of plasticity models in to finite element software. Throughout the course, we describe the general, multiaxial form of the theory but uniquely, wherever possible, reduce the equations to their simplest, uniaxial form to develop understanding of the general theory and we hope physical insight. The course bridges the gap between senior undergraduate/graduate materials on engineering mechanics and existing advanced finite element software. It introduces a range of engineering applications, including assessment of damage and failure, prediction of deformation localization and necking.

Lecture Schedule: Lecture Notes and Tutorial Instructions will be posted on Avenue to Learn

Lectures: Time: Wednesdays 2:00 PM – 5:00 PM
Place: TBA
(Start on January 17, 2024)

Textbook: • F. Dunne & N. Petrinic: "Introduction to Computational Plasticity"

 • Lecture Notes

References: • Y.C. Fung: "A First Course In Continuum Mechanics"
 • A.J.M. Spencer: “Continuum Mechanics”

Grading Scheme: Project 1 20%
 Project 2 35%
 Project 3 45%

Projects: Three projects are intended to give students practical experience in applying theories and a commercial finite element package to analyze problems in mechanics of engineering materials.
COURSE TOPICS:

Introduction
 What are finite elements and why do we need them?

Some Observations of Plastic Deformation
 Tensile Test
 Work hardening
 Necking

Tensor Analysis

Continuum Plasticity
 Yield Criterion
 Isotropic Hardening
 Kinematic Hardening
 Strain Rate-Sensitivity (Viscoplasticity and Creep)

Kinematics of Large Deformations and Continuum Mechanics
 Strain and Stress Measures at Large Deformations
 Deformation Gradient, Velocity Gradient
 Strain Rate and Continuum Spin
 Objective Stress Rate

Use of ANSYS or ABAQUS

Special Topics
 Gurson Damage Model
 High Strain-Rate Plasticity Models
 Plasticity Models and Materials Instability
POLICY NOTICE

Academic dishonesty consists of misrepresentation by deception or by other fraudulent means and can result in serious consequences, e.g. the grade of zero on an assignment, loss of credit with a notation on the transcript (notation reads: "Grade of F assigned for academic dishonesty"), and/or suspension or expulsion from the university. It is your responsibility to understand what constitutes academic dishonesty. For information on the various kinds of academic dishonesty please refer to the Academic Integrity Policy, specifically Appendix 3, located at

http://www.mcmaster.ca/senate/academic/ac_integrity.htm

The following illustrates only three forms of academic dishonesty:

1. **Plagiarism, e.g. the submission of work that is not one's own or for which other credit has been obtained.** (Assignments must be one’s own work. Submission of any part of an assignment copied from someone else constitutes plagiarism.)
2. **Improper collaboration in group work.** (Assignments and projects in this course represent individual work and therefore must be done entirely by each student. It is appropriate to work in pairs/groups to learn how to solve the problems, but it is unacceptable for individuals in a group to share/copy solutions.)
3. **Copying or using unauthorized aids in tests and examinations.**