

Academic Year: 2023/24

Term: Fall

ELEC ENG 4PK4Power Electronics

COURSE OUTLINE

Please refer to course website for updated information.

COURSE DESCRIPTION

To analyze, model, and predict the performance of basic power converter configurations. To explain topologies of power electronics, AC/DC, DC/DC, DC/AC and AC/AC. To design proper switching circuits.

PRE-REQUISITES AND ANTI-REQUISITES

Pre-requisite(s): ELECENG 2CJ4, ELECENG 3EJ4

Anti-requisite(s): none

SCHEDULE and MODE OF DELIVERY

The lectures, tutorials, and labs for this course will be run in-person.

Lecture: Tuesday 12:30pm-2:20pm, Thursday 12:30pm-1:20pm

Tutorial: Friday 12:30pm-1:20pm

Tutorials start week of Sept. 11

<u>Lab:</u> Every 2 weeks starting Sept. 18. See detailed lab schedule in Week 1 course slides (available on Avenue to Learn).

INSTRUCTOR

Dr. Jennifer Bauman

E-mail: jennifer.bauman@mcmaster.ca

Office: ITB-A220

Phone: 905-525-9140 ext. 27599

Office Hours: Monday 1:30pm - 2:30pm

TEACHING ASSISTANTS

Names and contact information are provided in the Week 1 course slides (available on Avenue to Learn).

Academic Year: 2023/24

Term: Fall

COURSE WEBSITE/S

http://avenue.mcmaster.ca

COURSE OBJECTIVES

Power electronic converters are used in different applications that range from low-power phone/laptop battery chargers, home appliances, and automotive systems; to medium-power renewable energy systems, switching power supplies, and industrial motor drives, to high-power active filters and high voltage AC transmission systems for power systems. By the end of this course, the student will be able to:

- 1. Define power electronics and recognize power electronic devices, circuits, and applications.
- 2. Classify converter types and conversion functions.
- 3. Recognize converter topologies, derive their governing equations, and design, analyze and simulate converter circuits.
- 4. Draw I-V characteristics of power devices and analyze their switching behaviour.
- 5. Interpret power device datasheets and use the appropriate parameters in design, analysis and simulation.

CEAB GRADUATE ATTRIBUTES (GAS)

Note: The CEAB Graduate Attributes (GAs) defined in this section are measured throughout the course and form part of the Department's continuous improvement process. They are a key component of the accreditation process for the program and will not be taken into consideration in determining a student's actual grade in the course. For more information on accreditation, please ask your instructor or visit: http://www.engineerscanada.ca

Attributes	Indicators		Measurement
Attributes	Number	Description	Method(s)
Problem Analysis	2.2	Proposes problem solutions supported by substantiated reasoning, recognizing the limitations of the solutions.	Final Exam
Investigation	3.2	Synthesizes the results of an investigation to reach valid conclusions.	Labs
Design	4.1	Defines the problem by identifying relevant context, constraints, and prior approaches before exploring potential design solutions.	Labs
Professionalism	8.1	Describes the duty of a Professional Engineer to the public, client, employer, and the profession.	Final Exam
Ethics and Equity	10.1	Applies ethical frameworks and reasoning, including in situations where there are possible conflicting interests among the stakeholders.	Final Exam

Academic Year: 2023/24

Term: Fall

ASSUMED KNOWLEDGE

Students should have good knowledge of the following topics:

- 1. Circuits Analysis and Systems
- 2. Electronic Devices

COURSE MATERIALS

Required Texts:

N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, Media Enhanced Third Edition, John Wiley & Sons, 2003, ISBN 978-0-471-22693-2.

Calculator:

Any calculator is permitted during examinations.

COURSE OVERVIEW

Date/Week	Торіс		
Week 1	Introduction to Power Electronics, Review of Electric Circuits		
Week 2	Power Semiconductor Devices		
Week 3	Non-Ideal Devices		
Week 4	AC -> Uncontrolled DC: Diode Rectifiers		
Week 5	AC -> Controlled DC: Phase-Controlled Rectifiers and Inverters		
Week 6	DC -> DC: Non-Isolated DC/DC Converters (Buck)		
Week 7	DC -> DC: Non-Isolated DC/DC Converters (Boost)		
Week 8	DC -> DC: Non-Isolated DC/DC Converters (Buck-Boost)		
Week 9	DC -> DC: Isolated DC/DC Converters		
Week 10	DC -> AC: Single Phase Inverters		
Week 11	DC-> AC: Three Phase Inverters		
Week 12	Review		

A more detailed time line is available on the course website. At certain points in the course, it may make good sense to modify the schedule. The instructor may modify elements of the course and will notify students accordingly (in class, on the course website).

Jaueillic Teal. 2023/24

Term: Fall

LABORATORY OVERVIEW

Labs are NOT held during the first or second weeks of term.

Date/Week	Topic	
Lab 1	Diode Rectifiers	
Lab 2	Thyristor Converters	
Lab 3	Simulation of Buck Converter	
Lab 4	Simulation of Boost Converter	
Lab 5	AC/AC Converters	

LABORATORY OPERATION

- Each student in the course is required to pass the lab safety quiz prior to attempting any of the laboratories. The video and quiz will be on Avenue to Learn.
- Access to all labs is restricted in the interest of security and safety. Information on accessing and using the lab can be found on the webpage: https://www.eng.mcmaster.ca/ece/labs-and-health-safety/#tab-content-labs-access-and-use
- Lab Experiments and Submissions: Students should review each lab before their lab session, and do initial calculations/design when applicable. Students can work in groups of 1 or 2 for each lab, space permitting. One lab report should be submitted per group. Completed lab reports must be submitted by 5:30pm on the day of the lab. Students may choose to work on a paper copy (printed by the student before the lab) if so, the completed lab report must be given to the TA by 5:30pm. If the student prefers to do an electronic lab report, it must be uploaded to Avenue to Learn by 5:30pm on the day of their lab. No late submissions will be accepted in either case.
- For the simulation-based labs (Labs 3 and 4), attendance in the lab is not mandatory, but the TA will run the lab session as usual so students can attend the lab to do the simulations and get help from the TA if needed. If students choose not to attend their lab session, their lab report is still due at 5:30pm on their scheduled lab day.

ASSESSMENT

Component	If Final Exam Mark > Midterm Exam Mark	If Final Exam Mark <= Midterm Exam Mark
Labs (5 x 5%)	25%	25%
Midterm	0%	25%
Final Exam	75%	50%
Total	100%	100%

Grading and Evaluation Policies

Late lab submissions will not be accepted – they will be assigned a mark of zero.

Term: Fall

 No make-up midterm tests will be granted. Weight of a missed midterm test will be transferred to final exam.

ACADEMIC INTEGRITY

You are expected to exhibit honesty and use ethical behaviour in all aspects of the learning process. Academic credentials you earn are rooted in principles of honesty and academic integrity. It is your responsibility to understand what constitutes academic dishonesty. Academic dishonesty is to knowingly act or fail to act in a way that results or could result in unearned academic credit or advantage. This behaviour can result in serious consequences, e.g. the grade of zero on an assignment, loss of credit with a notation on the transcript (notation reads: "Grade of F assigned for academic dishonesty"), and/or suspension or expulsion from the university. For information on the various types of academic dishonesty please refer to the Academic Integrity Policy, located at https://secretariat.mcmaster.ca/university-policies-proceduresguidelines/ The following illustrates only three forms of academic dishonesty:

- plagiarism, e.g. the submission of work that is not one's own or for which other credit has been obtained.
- improper collaboration in group work.
- copying or using unauthorized aids in tests and examinations.

AUTHENTICITY / PLAGIARISM DETECTION

Some courses may use a web-based service (Turnitin.com) to reveal authenticity and ownership of student submitted work. For courses using such software, students will be expected to submit their work electronically either directly to Turnitin.com or via an online learning platform (e.g. A2L, etc.) using plagiarism detection (a service supported by Turnitin.com) so it can be checked for academic dishonesty. Students who do not wish their work to be submitted through the plagiarism detection software must inform the Instructor before the assignment is due. No penalty will be assigned to a student who does not submit work to the plagiarism detection software. All submitted work is subject to normal verification that standards of academic integrity have been upheld (e.g., on-line search, other software, etc.). For more details about McMaster's use of Turnitin.com please go to www.mcmaster.ca/academicintegrity.

COURSES WITH AN ON-LINE ELEMENT

Some courses may use on-line elements (e.g. e-mail, Avenue to Learn (A2L), LearnLink, web pages, capa, Moodle, ThinkingCap, etc.). Students should be aware that, when they access the electronic components of a course using these elements, private information such as first and last names, user names for the McMaster e-mail accounts, and program affiliation may become apparent to all other students in the same course. The available information is dependent on the technology used. Continuation in a course that uses on-line elements will be deemed consent to this disclosure. If you have any questions or concerns about such disclosure please discuss this with the course instructor.

Term: Fall

Some courses may use online proctoring software for tests and exams. This software may require students to turn on their video camera, present identification, monitor and record their computer activities, and/or lock/restrict their browser or other applications/software during tests or exams. This software may be required to be installed before the test/exam begins.

COPYRIGHT AND RECORDING

Students are advised that lectures, demonstrations, performances, and any other course material provided by an instructor include copyright protected works. The Copyright Act and copyright law protect every original literary, dramatic, musical and artistic work, including lectures by University instructors. The recording of lectures, tutorials, or other methods of instruction may occur during a course. Recording may be done by either the instructor for the purpose of authorized distribution, or by a student for the purpose of personal study. Students should be aware that their voice and/or image may be recorded by others during the class. Please speak with the instructor if this is a concern for you.

CONDUCT EXPECTATIONS

As a McMaster student, you have the right to experience, and the responsibility to demonstrate, respectful and dignified interactions within all of our living, learning and working communities. These expectations are described in the Code of Student Rights & Responsibilities (the "Code"). All students share the responsibility of maintaining a positive environment for the academic and personal growth of all McMaster community members, whether in person or online. It is essential that students be mindful of their interactions online, as the Code remains in effect in virtual learning environments. The Code applies to any interactions that adversely affect, disrupt, or interfere with reasonable participation in University activities. Student disruptions or behaviours that interfere with university functions on online platforms (e.g. use of Avenue 2 Learn, WebEx or Zoom for delivery), will be taken very seriously and will be investigated. Outcomes may include restriction or removal of the involved students' access to these platforms.

ACADEMIC ACCOMMODATIONS

Students with disabilities who require academic accommodation must contact Student Accessibility Services (SAS) at 905-525-9140 ext. 28652 or sas@mcmaster.ca to make arrangements with a Program Coordinator. For further information, consult McMaster University's Academic Accommodation of Students with Disabilities policy.

Students requiring academic accommodation based on religious, indigenous or spiritual observances should follow the procedures set out in the RISO policy. Students should submit their request to their Faculty Office normally within 10 working days of the beginning of term in which they anticipate a need for accommodation or to the Registrar's Office prior to their examinations.

Term: Fall

Students should also contact their instructors as soon as possible to make alternative arrangements for classes, assignments, and tests.

REQUESTS FOR RELIEF FOR MISSED ACADEMIC WORK

McMaster Student Absence Form (MSAF): In the event of an absence for medical or other reasons, students should review and follow the Academic Regulation in the Undergraduate Calendar "Requests for Relief for Missed Academic Term Work".

EXTREME CIRCUMSTANCES

The University reserves the right to change the dates and deadlines for any or all courses in extreme circumstances (e.g., severe weather, labour disruptions, etc.). Changes will be communicated through regular McMaster communication channels, such as McMaster Daily News, A2L and/or McMaster email.

www.eng.mcmaster.ca/ece

Electrical and Computer Engineering Lab Safety

Information for Laboratory Safety and Important Contacts

This document provides important information for the healthy and safe operation of ECE instructional laboratories. This document is required reading for all laboratory supervisors, instructors, researchers, staff, and students working in or managing instructional laboratories in ECE. It is expected that revisions and updates to this document will be done continually. A McMaster University lab manual is also available to read in every laboratory and online https://hr.mcmaster.ca/app/uploads/2019/07/2019-McMaster-Lab-Manual.pdf

General Health and Safety Principles

Good laboratory practice requires that every laboratory worker and supervisor observe the following whether conducting lab work at school or at home:

- 1. Food and beverages are not permitted in the instructional laboratories.
- 2. A Laboratory Information Sheet on each lab door identifying potential hazards and emergency contact names should be known.

Academic Year: 2023/24

Term: Fall

- 3. Laboratory equipment should only be used for its designed purpose.
- 4. Proper and safe use of lab equipment should be known before using it.
- 5. The course TA leading the lab should be informed of any unsafe condition.
- 6. The location and correct use of all available safety equipment should be known.
- 7. Potential hazards and appropriate safety precautions should be determined, and sufficiency of existing safety equipment should be confirmed before beginning new operations.
- 8. Proper waste disposal procedures should be followed.
- 9. Personal ergonomics should be practiced when conducting lab work. https://bit.ly/3fOE71E
- 10. Current University health and safety issues, and protocol should be known.

https://hr.mcmaster.ca/resources/covid19/workplace-health-and-safety-guidance-during-covid-19/

Location of Safety Equipment

Fire Extinguisher

On walls in halls outside of labs

Telephone

On the wall of every lab near the door

First Aid Kit

ITB A111, or dial "88" after 4:30 p.m.

Fire Alarm Pulls

Near all building exit doors on all floors

Who to Contact

Emergency Medical / Security: On McMaster University campus, call Security at extension 88 or 905-522-4135 from a cell phone.

Non-Emergency Accident or Incident: Immediately inform the TA on duty or Course Instructor.

University Security (Enquiries / Non-Emergency): Dial 24281 on a McMaster phone or dial 905-525-9140 ext. 24281 from a cell phone.

See TA or Instructor: For problems with heat, ventilation, fire extinguishers, or immediate repairs Environmental & Occupational Health Support Services (EOHSS): For health and safety questions dial 24352 on a McMaster phone or dial 905-525-9140 ext. 24352 from a cell phone.

ECE Specific Instructional Laboratory Concerns: For non-emergency questions specific to the ECE laboratories, please contact 24103.

In Case of a Fire (On Campus Dial 88)

When calling to report a fire, give name, exact location, and building.

- 1. Immediately vacate the building via the nearest Exit Route. Do not use elevators!
- 2. Everyone is responsible for knowing the location of the nearest fire extinguisher, the fire alarm, and the nearest fire escape.
- 3. The safety of all people in the vicinity of a fire is of foremost importance. But do not endanger vourself!

Academic Year: 2023/24

Term: Fall

- 4. In the event of a fire in your work area shout "Fire!" and pull the nearest fire alarm.
- 5. Do not attempt to extinguish a fire unless you are confident it can be done in a prompt and safe manner utilizing a hand-held fire extinguisher. Use the appropriate fire extinguisher for the specific type of fire. Most labs are equipped with Class A, B, and C extinguishers. Do not attempt to extinguish Class D fires which involve combustible metals such as magnesium, titanium, sodium, potassium, zirconium, lithium, and any other finely divided metals which are oxidizable. Use a fire sand bucket for Class D fires.
- 6. Do not attempt to fight a major fire on your own.
- 7. If possible, make sure the room is evacuated; close but do not lock the door and safely exit the building.

Clothing on Fire

Do not use a fire extinguisher on people

- 1. Douse with water from safety shower immediately or
- 2. Roll on floor and scream for help or
- 3. Wrap with fire blanket to smother flame (a coat or other nonflammable fiber may be used if blanket is unavailable). Do not wrap a standing person; rather, lay the victim down to extinguish the fire. The blanket should be removed once the fire is out to disperse the heat.

Equipment Failure or Hazard

Failure of equipment may be indicative of a safety hazard - You must report all incidents.

Should you observe excessive heat, excessive noise, damage, and/or abnormal behaviour of the lab equipment:

- 1. Immediately discontinue use of the equipment.
- 2. In power labs, press wall-mounted emergency shut-off button.
- 3. Inform your TA of the problem.
- 4. Wait for further instructions from your TA.
- 5. TA must file an incident report.

Protocol For Safe Laboratory Practice

In general, leave equipment in a safe state when you finish with it. When in doubt, consult the course TA.

Defined Roles

TA	The first point of contact for lab supervision		
ECE Lab Supervisor	Steve Spencer- ITB 147	steve@mail.ece.mcmaster.ca	
ECE Chair	Mohamed Bakr – ITB A111	mbakr@mcmaster.ca	
ECE Administrator	Shelby Gaudrault- ITB A111	gaudraus@mcmaster.ca	
ECE Course Instructor Please contact your specific course instructor directly		course instructor directly	