

Electrical and Computer Engineering
ELECENG 3TR4
Communication Systems
Winter 2026

ENGINEERING

Instructor Information

Jun Chen

Email: chenjun@mcmaster.ca

Office: ITB/A221

Office Hours:

By appointment

Teaching Assistants

Names, contact information and office hours are provided on the course website.

Class Times

Lecture: Tuesday, Wednesday and Friday, 12:30 pm – 1:20 pm

Tutorial: Tuesday, 11:30 am – 12:20 pm

Lab (Every Other Week): L01 Monday 2:30 pm – 5:20 pm; L02 Monday 2:30 pm – 5:20 pm; L03 Tuesday 2:30 pm – 5:20 pm; L04 Tuesday 2:30 pm – 5:20 pm; L05 Wednesday 2:30 pm – 5:20 pm; L06 Wednesday 2:30 pm – 5:20 pm; L07 Thursday 2:30 pm – 5:20 pm; L08 Thursday 2:30 pm – 5:20 pm; L09 Friday 2:30 pm – 5:20 pm; L10 Monday 6:00 pm – 9:00 pm; L11 Thursday 6:00 pm – 9:00 pm

Course Dates: 01/05/2026 - 04/07/2026

Units: 4.00

Course Delivery Mode: In Person

Course Description: Review of continuous-time signals and systems; amplitude modulation, phase and frequency modulation schemes; digital modulation; stochastic processes; noise performance. Three lectures, one tutorial, one lab every other week; second term Prerequisite(s): ELECENG 3TP4 or ENGPHYS 3W04; One of ELECENG 3TQ4, ELECENG 3TQ3 or STATS 3Y03; or ENGPHYS 3W04 A/B

Pre-Requisite(s) and Anti-Requisite(s)

Pre-requisite(s): ELECENG 3TP4 or ENGPHYS 3W04; One of ELECENG 3TQ4, ELECENG 3TQ3 or STATS 3Y03; or ENGPHYS 3W04 A/B

Anti-requisite(s): None

Instructor-Specific Course Information

The material for this course will be delivered through a mixture of online videos, textbook readings, live lectures, tutorials, and laboratories.

Important Links

- [Mosaic](#)
- [Avenue to Learn](#)
- [Student Accessibility Services - Accommodations](#)
- [McMaster University Library](#)
- [eReserves](#)

Graduate Attributes

The Canadian Engineering Accreditation Board (CEAB) is a division of Engineers Canada and is responsible for accrediting undergraduate engineering programs across Canada. Accreditation by the CEAB ensures that the engineering programs meet a national standard of quality and cover essential educational requirements. Graduate Attributes are a set of qualities and skills that the CEAB expects engineering graduates to possess. These attributes are a benchmark for the learning outcomes of accredited engineering

programs. This section lists the Graduate Attribute Indicators associated with the Learning Outcomes in this course.

Graduate Attribute Indicator 1.4: Competence in specialized engineering knowledge. (Course Learning Outcome 1)

Graduate Attribute Indicator 2.1: Identifies and states reasonable assumptions and suitable engineering fundamentals, before proposing a solution path to a problem. (Course Learning Outcome 1)

Graduate Attribute Indicator 4.2: Explores a breadth of potential solutions, considering their benefits and trade-offs as they relate to the project requirements. (Course Learning Outcome 2)

Graduate Attribute Indicator 4.4: Justifies and reflects on design decisions, giving consideration to limitations, assumptions, constraints and other relevant factors. (Course Learning Outcome 2)

Graduate Attribute Indicator 8.2: Integrates appropriate standards, codes, legal and regulatory factors into decision making. (Course Learning Outcome 3)

Course Learning Objectives

- This course introduces the fundamentals of modern communication systems. Upon completion, students will not only understand how AM and FM radios and digital modems operate, but also gain practical experience in evaluating their performance and limitations in the presence of noise.
- Through hands-on laboratory experiments and design exercises, students will explore a range of possible solutions to communication system design problems, weighing the benefits and trade-offs among complexity, bandwidth efficiency, and noise robustness. They will learn to justify and reflect on their design and

implementation choices, taking into account practical limitations, assumptions, and constraints encountered in real systems.

- Students will also become familiar with relevant communication standards and regulatory considerations, developing an appreciation of how such factors influence design decisions.
- The course paves the way for a more advanced 4th year course EE4TK4 on this subject.

CEAB Graduate Attributes (GAs)

The CEAB Graduate Attributes (GAs) defined in this section are measured throughout the course and form part of the Department's continuous improvement process. They are a key component of the accreditation process for the program and will not be taken into consideration in determining a student's actual grade in the course. For more information on accreditation, please ask your instructor or visit: <http://www.engineerscanada.ca>

Attributes	Indicators		Measurement Method(s)
	Number	Description	
Knowledge Base for Engineering	1.4	Competence in specialized engineering knowledge	Lab reports, class quizzes, mid-term exam or final exam
Problem Analysis	2.1	Identifies and states reasonable assumptions and suitable engineering fundamentals, before proposing a solution path to a problem.	Lab reports, class quizzes, mid-term exam or final exam
Design	4.2	Explores a breadth of potential solutions, considering their benefits and trade-offs as they relate to the project requirements.	Lab reports, class quizzes, mid-term exam or final exam

Design	4.4	Justifies and reflects on design decisions, giving consideration to limitations, assumptions, constraints and other relevant factors.	Lab reports, class quizzes, mid-term exam or final exam
Professionalism	8.2	Integrates appropriate standards, codes, legal and regulatory factors into decision making.	Lab reports, class quizzes, mid-term exam or final exam

Lab Safety

The Faculty of Engineering is committed to McMaster University's Workplace and Environmental Health and Safety Policy which states: "Students are required by University policy to comply with all University health, safety and environmental programs". It is your responsibility to understand McMaster University Workplace and Environmental Health and Safety programs and policies. For information on these programs and policies please refer to [McMaster University Health and Safety](#). The Lab Safety Handbook is available [here](#), as well as on A2L.

It is also your responsibility to follow any specific Standard Operating Procedures (SOPs) provided for some of the experiments and the laboratory equipment. A laboratory-specific set of rules can also be added to ensure that students fully understand laboratory safety rules that are in place prior to their first session.

Assumed Knowledge

Signals and systems; Random variables and probability theory.

Required Materials and Texts

Please sign in with your MacID [here](#) to view your booklist

Communication Systems

ISBN: 9780471697909

Authors: Simon Haykin, Michael Moher

Publisher: Wiley

Publication Date: March 16, 2009

Edition: 5th Edition

An Introduction to Analog and Digital Communications

ISBN: 9780471432227

Authors: Simon Haykin, Michael Moher

Publisher: Wiley

Publication Date: January 30, 2006

Edition: 2nd Edition

Only the McMaster Standard Calculator will be permitted in tests and examinations.

This is available at the Campus Store.

Lecture notes, lab manuals, and online videos

Class Format

In Person

Course Schedule

A weekly breakdown of the course schedule

Week	Topic	Readings
1	Review of Fourier series	Lecture notes
2	Review of Fourier transforms	Lecture notes
3	Amplitude modulation and demodulation	Lecture notes
4	Amplitude modulation and demodulation	Lecture notes

Week	Topic	Readings
5	Frequency and phase modulation	Lecture notes
Midterm Break		
6	Frequency and phase demodulation	Lecture notes
7	Random variables	Lecture notes
8	Random processes	Lecture notes
9	Power spectral density and autocorrelation	Lecture notes
10	Digital modulation techniques	Lecture notes
11	Digital modulation techniques	Lecture notes
12	ASK, FSK and PSK	Lecture notes
13	Digital radio	Lecture notes

A more detailed time line is available on the course website.

At certain points in the course, it may make good sense to modify the schedule. The instructor may modify elements of the course and will notify students accordingly (in class, on the course website).

Laboratory Overview

Lab	Week	Topic
1	2 – 4	Review of Fourier theory and representation of signals in the frequency domain
2	5 – 7	Double sideband suppressed carrier modulation

3	8 – 10	Random processes and noise
4	11 – 12	AM radio kit

Laboratory Operation

- Each student in the course is required to pass the lab safety quiz prior to attempting any of the laboratories. The quiz will be available on Avenue to Learn.
- Access to all labs is restricted in the interest of security and safety. Information on accessing and using the lab can be found on this webpage:
<https://www.eng.mcmaster.ca/ece/labs-and-health-safety#Labs-Access-and-Use>
- Lab Requirements: Students need to submit their experiment results on Avenue to Learn on the due date described in the lab manual. No late submission will be accepted.

Course Evaluation

Component	Weight
Labs (4)	20%
Quizzes (3)	21%
Mid-term Exam (1)	19%
Final Exam (1)	40%
Total	100%

Grading and Evaluation Policies

- There are four (4) labs, three (3) quizzes, one (1) mid-term exam, and one (1) final exam to be evaluated in this course.
- The quizzes are conducted during the tutorials.
- No make-up/deferred quiz or mid-term exam
- MSAF transfers the weight of a missed lab report, quiz, or mid-term exam to that of the final exam.

- Use of books, notes, other copied materials, computers or cell phones are not allowed during exams.

Undergraduate Grading Scale

The McMaster 12 Point Grading Scale

Grade	Equivalent Grade Point	Equivalent Percentages
A+	12	90-100
A	11	85-89
A-	10	80-84
B+	9	77-79
B	8	73-76
B-	7	70-72
C+	6	67-69
C	5	63-66
C-	4	60-62
D+	3	57-59
D	2	53-56
D-	1	50-52
F	0	0-49

Lab Information

Labs are NOT held during the first week of term.

APPROVED ADVISORY STATEMENTS

Academic Integrity

You are expected to exhibit honesty and use ethical behaviour in all aspects of the learning process. Academic credentials you earn are rooted in principles of honesty and academic integrity. **It is your responsibility to understand what constitutes academic dishonesty.**

Academic dishonesty is to knowingly act or fail to act in a way that results or could result in unearned academic credit or advantage. This behaviour can result in serious consequences, e.g. the grade of zero on an assignment, loss of credit with a notation on the transcript (notation reads: "Grade of F assigned for academic dishonesty"), and/or suspension or expulsion from the university. For information on the various types of academic dishonesty please refer to the [Academic Integrity Policy](#).

The following illustrates only three forms of academic dishonesty:

- plagiarism, e.g. the submission of work that is not one's own or for which other credit has been obtained.
- improper collaboration in group work.
- copying or using unauthorized aids in tests and examinations.

Authenticity / Plagiarism

Some courses may use a web-based service (Turnitin.com) to reveal authenticity and ownership of student submitted work. For courses using such software, students will be expected to submit their work electronically either directly to Turnitin.com or via an online learning platform (e.g. Avenue to Learn, etc.) using plagiarism detection (a service supported by Turnitin.com) so it can be checked for academic dishonesty.

Students who do not wish their work to be submitted through the plagiarism detection software must inform the Instructor before the assignment is due. No penalty will be assigned to a student who does not submit work to the plagiarism detection software. **All submitted work is subject to normal verification that standards of academic integrity have been upheld** (e.g., on-line search, other software, etc.). For more details about McMaster's use of Turnitin.com please go to www.mcmaster.ca/academicintegrity.

Courses with an On-line Element

Some courses may use on-line elements (e.g. e-mail, Avenue to Learn, LearnLink, web pages, capa, Moodle, ThinkingCap, etc.). Students should be aware that, when they access the electronic components of a course using these elements, private information

such as first and last names, user names for the McMaster e-mail accounts, and program affiliation may become apparent to all other students in the same course. The available information is dependent on the technology used. Continuation in a course that uses on-line elements will be deemed consent to this disclosure. If you have any questions or concerns about such disclosure please discuss this with the course instructor.

Online Proctoring

Some courses may use online proctoring software for tests and exams. This software may require students to turn on their video camera, present identification, monitor and record their computer activities, and/or lock/restrict their browser or other applications/software during tests or exams. This software may be required to be installed before the test/exam begins.

Conduct Expectations

As a McMaster student, you have the right to experience, and the responsibility to demonstrate, respectful and dignified interactions within all of our living, learning and working communities. These expectations are described in the [Code of Student Rights & Responsibilities](#) (the “Code”). All students share the responsibility of maintaining a positive environment for the academic and personal growth of all McMaster community members, **whether in person or online**.

It is essential that students be mindful of their interactions online, as the Code remains in effect in virtual learning environments. The Code applies to any interactions that adversely affect, disrupt, or interfere with reasonable participation in University activities. Student disruptions or behaviours that interfere with university functions on online platforms (e.g. use of Avenue 2 Learn, WebEx or Zoom for delivery), will be taken very seriously and will be investigated. Outcomes may include restriction or removal of the involved students’ access to these platforms.

Academic Accommodation of Students with Disabilities

Students with disabilities who require academic accommodation must contact [Student Accessibility Services](#) (SAS) at 905-525-9140 ext. 28652 or sas@mcmaster.ca to make arrangements with a Program Coordinator. For further information, consult McMaster University's [Academic Accommodation of Students with Disabilities](#) policy.

Requests for Relief for Missed Academic Term Work

In the event of an absence for medical or other reasons, students should review and follow the [Policy on Requests for Relief for Missed Academic Term Work](#).

Academic Accommodation for Religious, Indigenous, or Spiritual Observances (RISO)

Students requiring academic accommodation based on religious, Indigenous or spiritual observances should follow the procedures set out in the [RISO](#) policy. Students should submit their request to their Faculty Office **normally within 10 working days** of the beginning of term in which they anticipate a need for accommodation or to the Registrar's Office prior to their examinations. Students should also contact their instructors as soon as possible to make alternative arrangements for classes, assignments, and tests.

Copyright and Recording

Students are advised that lectures, demonstrations, performances, and any other course material provided by an instructor include copyright protected works. The Copyright Act and copyright law protect every original literary, dramatic, musical and artistic work, **including lectures** by University instructors.

The recording of lectures, tutorials, or other methods of instruction may occur during a course. Recording may be done by either the instructor for the purpose of authorized distribution, or by a student for the purpose of personal study. Students should be aware that their voice and/or image may be recorded by others during the class. Please speak with the instructor if this is a concern for you.

Extreme Circumstances

The University reserves the right to change the dates and deadlines for any or all courses in extreme circumstances (e.g., severe weather, labour disruptions, etc.). Changes will be communicated through regular McMaster communication channels, such as McMaster Daily News, Avenue to Learn and/or McMaster email.

Turnitin.com

Some courses may use a web-based service (Turnitin.com) to reveal authenticity and ownership of student submitted work. For courses using such software, students will be expected to submit their work electronically either directly to Turnitin.com or via an online learning platform (e.g. A2L, etc.) using plagiarism detection (a service supported by Turnitin.com) so it can be checked for academic dishonesty.

Students who do not wish their work to be submitted through the plagiarism detection software must inform the Instructor before the assignment is due. No penalty will be assigned to a student who does not submit work to the plagiarism detection software. All submitted work is subject to normal verification that standards of academic integrity have been upheld (e.g., on-line search, other software, etc.). For more details about McMaster's use of Turnitin.com please go to www.mcmaster.ca/academicintegrity.

Generative AI: Use Prohibited

Students are not permitted to use generative AI in this course. In alignment with [McMaster academic integrity policy](#), it "shall be an offence knowingly to ... submit academic work for assessment that was purchased or acquired from another source". This includes work created by generative AI tools. Also state in the policy is the following, "Contract Cheating is the act of "outsourcing of student work to third parties" (Lancaster & Clarke, 2016, p. 639) with or without payment." Using Generative AI tools is a form of contract cheating. Charges of academic dishonesty will be brought forward to the Office of Academic Integrity.

Generative AI: Some Use Permitted

Example One

Students may use generative AI in this course in accordance with the guidelines outlined for each assessment, and so long as the use of generative AI is referenced and cited following citation instructions given in the syllabus. Use of generative AI outside assessment guidelines or without citation will constitute academic dishonesty. It is the student's responsibility to be clear on the limitations for use for each assessment and to be clear on the expectations for citation and reference and to do so appropriately.

Example Two

Students may use generative AI for [editing/translating/outlining/brainstorming/revising/etc] their work throughout the course so long as the use of generative AI is referenced and cited following citation instructions given in the syllabus. Use of generative AI outside the stated use of [editing/translating/outlining/brainstorming/revising/etc] without citation will constitute academic dishonesty. It is the student's responsibility to be clear on the limitations for use and to be clear on the expectations for citation and reference and to do so appropriately.

Example Three

Students may freely use generative AI in this course so long as the use of generative AI is referenced and cited following citation instructions given in the syllabus. Use of generative AI outside assessment guidelines or without citation will constitute academic dishonesty. It is the student's responsibility to be clear on the expectations for citation and reference and to do so appropriately.

Generative AI: Unrestricted Use

Students may use generative AI throughout this course in whatever way enhances their learning; no special documentation or citation is required.

Electrical and Computer Engineering Lab Safety

Information for Laboratory Safety and Important Contacts

This document provides important information for the healthy and safe operation of ECE instructional laboratories. This document is required reading for all laboratory supervisors, instructors, researchers, staff, and students working in or managing instructional laboratories in ECE. It is expected that revisions and updates to this document will be done continually. A McMaster University lab manual is also available to read in every laboratory and online: <https://hr.mcmaster.ca/app/uploads/2019/07/2019-McMaster-Lab-Manual.pdf>

General Health and Safety Principles

Good laboratory practice requires that every laboratory worker and supervisor observe the following whether conducting lab work at school or at home:

1. Food and beverages are not permitted in the instructional laboratories.
2. A Laboratory Information Sheet on each lab door identifying potential hazards and emergency contact names should be known.
3. Laboratory equipment should only be used for its designed purpose.
4. Proper and safe use of lab equipment should be known before using it.
5. The course TA leading the lab should be informed of any unsafe condition.
6. The location and correct use of all available safety equipment should be known.
7. Potential hazards and appropriate safety precautions should be determined, and sufficiency of existing safety equipment should be confirmed before beginning new operations.
8. Proper waste disposal procedures should be followed.
9. Personal ergonomics should be practiced when conducting lab work.
<https://bit.ly/3fOE71E>
10. Current University health and safety issues, and protocols should be known.
<https://hr.mcmaster.ca/resources/covid19/workplace-health-and-safety-guidance-during-covid-19/>

Location of Safety Equipment

Fire Extinguisher

On walls in halls outside of labs

First Aid Kit

ITB A111, or dial "88" after 4:30 p.m.

Telephone

On the wall of every lab near the door

Fire Alarm Pulls

Near all building exit doors on all floors

Who to Contact

Emergency Medical/Security:	On McMaster University Campus, call Security at extension 88 or 905-522-4135 from a cell phone.
Non-Emergency Accident or Incident:	Immediately inform the TA on duty or Course Instructor.
University Security (Enquiries/Non-Emergency):	Dial 24281 on a McMaster phone or dial 905-525-9140 ext. 24281 from a cell phone.
See TA or Instructor:	For problems with heat, ventilation, fire extinguishers, or immediate repairs.
Environmental & Occupational Health Support Services (EOHSS):	For health and safety questions dial 24352 on a McMaster phone or dial 905-525-9140 ext. 24352 from a cell phone.

In Case of a Fire (On Campus Dial 88)

When calling to report a fire, give name, exact location, and building.

1. Immediately vacate the building via the nearest Exit Route. Do not use elevators!

2. Everyone is responsible for knowing the location of the nearest fire extinguisher, the fire alarm, and the nearest fire escape.
3. The safety of all people in the vicinity of a fire is of foremost importance. But do not endanger yourself!
4. In the event of a fire in your work area shout "Fire!" and pull the nearest fire alarm.
5. Do not attempt to extinguish a fire unless you are confident it can be done in a prompt and safe manner utilizing a hand-held fire extinguisher. Use the appropriate fire extinguisher for the specific type of fire. Most labs are equipped with Class A, B, and C extinguishers. Do not attempt to extinguish Class D fires which involve combustible metals such as magnesium, titanium, sodium, potassium, zirconium, lithium, and any other finely divided metals which are oxidizable. Use a fire sand bucket for Class D fires.
6. Do not attempt to fight a major fire on your own.
7. If possible, make sure the room is evacuated; close but do not lock the door and safely exit the building.

Clothing on Fire

Do not use a fire extinguisher on people.

1. Douse with water from safety shower immediately or
2. Roll on floor and scream for help or
3. Wrap with fire blanket to smother flame (a coat or other non-flammable fiber may be used if blanket is unavailable). Do not wrap a standing person; rather, lay the victim down to extinguish the fire. The blanket should be removed once the fire is out to disperse the heat.

Equipment Failure or Hazard

Failure of equipment may be indicative of a safety hazard - You must report all incidents.

Should you observe excessive heat, excessive noise, damage, and/or abnormal behaviour of the lab equipment:

1. Immediately discontinue use of the equipment.
2. In power labs, press wall-mounted emergency shut-off button.
3. Inform your TA of the problem.
4. Wait for further instructions from your TA.
5. TA must file an incident report.

Protocol For Safe Laboratory Practice

In general, leave equipment in a safe state when you finish with it. When in doubt, consult the course TA.

Defined Roles

TA	The first point of contact for lab supervision	
ECE Lab Supervisor	Steve Spencer- ITB 147	spencers@mcmaster.ca
ECE Chair	Mohamed Bakr- ITB A111	mbakr@mcmaster.ca
ECE Administrator	Shelby Gaudrault- ITB A111/B	gaudraus@mcmaster.ca
ECE Course Instructor	Please contact your specific course instructor directly	